				項目						
PRTF	₹番号: 252			素及び代表 を表-1 に示	的な無機ヒ素化す。	化合物	初期リスク評価指針 Ver. 2. 0			
物質	名(PRTR におけ	る): ヒ素及び	その無機化合	・の無機化合物						
	物理化学的性状		ヒ素及び代	ヒ素及び代表的な無機ヒ素化合物の性状を表-1 に示す。						
		①濃縮性					vては、食物連鎖を経由して順 れないという報告がある。			
		②BCF			蒟 (コイ)実涯 海産魚類で 90		う報告がある。			
		③生分解性	_							
一般情報	環境中運命	安定性(媒体中での動態)	岩は大主し水単素でああ水るのと中あ存:の結在、の化と中の存・の結在、のといりを上陽合す嫌と物をして大、す素イしる気素などが、出気大るはオで。的のどのは、	浸aso ₄ - Aso ₅ -	どにより土壌へ Q_4^{2-} 、 $H_2AsO_3^{-}$ としれるヒ素は二配 和るヒ素は二配 部が酸化されて 石の風化による 酸 (H_3AsO_4) と 地下水では、 地下水で態では が還に、 沈鉄、マ オンは、、 沈殿特	へし酸て っなこま、ン物 関行存三と 水、ては主ガル 与 ない まにン す	ニ素のような無機態の As ^{III} が こなり、As ^{III} と As ^V の混合物と 成へ移行する。水中ではヒ素は 酸素との親和力が大きいので酸 As ³⁺ は亜ヒ酸 (H ₃ AsO ₃) とし に+5 価のヒ酸イオンが安定で +3 価の亜ヒ酸イオンが安定で 、アルミニウムなどの酸化物・ 中の懸濁物として存在してい る。海藻は海水中のヒ素をメ			
発生源情報	製造・輸出入 量等(トン/ 年)	ヒ素である。	ヒ素及びその無機化合物のうち、主として製造・使用されるのは金属ヒ素及び三酸化二 ヒ素である。表-2 に三酸化二ヒ素の輸入量を示す。金属ヒ素の製造量、輸出入量を表-3 に示す。ヒ酸、五酸化二ヒ素及びヒ化水素の製造量・輸入量等は調査した範囲内では得 られなかった。							
	用途情報	使用される。	は金属ヒ素の原料となるほか、液晶ガラスや鉛ガラス製造時の清澄剤として金属ヒ素は、主として GaAs 等の化合物半導体合成用に用いられるほか、半成用、銅や鉛の添加剤としても用いられる。ヒ酸は、ヒ酸塩の原料として使化水素は、GaAs 半導体の製造原料として使用される。							
	PRTR データ (2003 年度)	各媒体の 排出量	大気 (t)	水域(t)	土壌(t)					
		届出	9	22			別排出量は、ヒ素純分に換算し			
		裾切り	-	-	_	値であ	る。 る排出量は含んでいない。			
		非対象業種	_	_	垤	.エ1ーみ	─────────────────────────────────────			

				項目								
		家庭	-	_	_	河川へ	の排出量:9	トン				
		移動体	-	_	-							
		合計	9	22	0							
		対象業種の届出・届出外 非鉄金属製造業(59%)下水道業(38%)産業廃棄物処分業(1%)金 排出量合計(上位5業種) 属鉱業(1%) 埋立による排出量は含んでいない。										
	その他の排出源	素れ出ラ動 人等れる明排の合いよっ森 発りい本れれがかり、 源素国国でる地下、 と大あるののでは、 とんかのでは、 とんかのでは、 というのでは、 という	鉱床が存在する地域の土壌におけるヒ素濃度は数 mg/kg から 100 mg/kg 以上に達する。ヒ素を含有する鉱石の風化作用によりヒ素は土壌へ、次いで水域へ移行する。ヒ素に汚染されていない地域の表層水や地下水中のヒ素濃度は 1~10 μg As/L であるが、土壌からの溶出による地下水汚染が世界的に深刻な問題となっているインドの西ベンガル州やバングラディッシュでは、1 mg As/L を超えることがある。ヒ素は土壌粒子の巻き上げ、火山活動、森林火災、海塩粒子の巻き上げ、植物の成長、生物活動に伴い大気へ排出される。人為発生源:ヒ素は石炭中、石油中に含まれ、これらの化石燃料を燃焼させる火力発電所等よりヒ素が大気中へ排出される。海外ではヒ素化合物が木材防腐剤や農薬として使用されている国があり、木材の燃焼や農薬の散布によりヒ素化合物が大気及び土壌へ排出される。日本国内でもかつて無機ヒ素化合物を含む木材防腐処理剤 CCA で処理した建築用材が用いられていたことがあり、建築廃棄物の焼却により、ヒ素を含む有毒なガスが大気中へ排出される可能性が懸念されている。地熱発電の貯水槽で通常のレベルの 1,000 倍の濃度のヒ素が検出されるという深刻なヒ素汚染が報告されている。その他の排出源として、都市ゴミの焼却、下水汚泥の投棄、肥料の使用に伴う排出が報告されている。									
	排出シナリオ	地殻中のヒ素は、鉱石の風化作用により土壌へ、次いで水域へ移行する。また、土壌粒子の巻き上げ、火山活動、森林火災、海塩粒子の巻き上げ、植物の成長、生物活動等に伴い大気中へ排出される。主たる人為発生源としては、非鉄金属(銅、亜鉛、鉛等)の製錬プロセスから大気及び水域への排出が考えられる。また、化石燃料の燃焼や、都市ゴミの焼却、生活排水等からも大気及び水域へ排出されることがある。										
暴露評価			①検出 地点/測 定地点	②検 出数/ 検体 数	③検出 範囲	④95% 値	⑤検出限界	⑥調査年度 ・測定機関				
Щ		大気中濃度 (µg/m³)	308/ 308	-/ 3, 489	0. 00042 -0. 047	0. 011	0. 000004 -0. 00021	2004 年 環境省				
	測定値	河川水中濃度 (μg/L)(AA-C 類型)	536/ 2, 647	_	nd-100	4. 7	1–5	2002 年 国立環境研究所環 境情報センター				
		飲料水中濃度 (μg/L)	868/ 5, 534	-/ 16, 69 3	nd-10	2. 2	1–10	2003 年 日本水道協会				
		食物中濃度(<i>μ</i> g/g)	ー日摂取量に従って混合した試料中のヒ素濃度を 測定し、濃度と食品の摂取量から一日あたりの食 食物中濃度(μ 事からのヒ素摂取量を算出しており、これによる									

						項目						
	推定	濃度	び	環境中で <i>0</i>	動態に	素の排出量の寄与が考 関する定量的な情報が よる暴露量推定は行わ	不足し					
	EEC (μg/L) 4.7											
	EEC		採	採用理用		中の濃度として得られているのはヒ素の合計濃度のみであるため、 を用いる。測定結果の 95 パーセンタイル 4.7 μg /L を採用。						
						①摂取量推定に採 用した濃度の値	②1 E g/人/	日推定摂取量(μ (日)	_	日体重当たり摂 (μ g/kg/日)		
			大	気		0. 011 (μg/m³)		0. 22		0. 0044		
		吸入 経路		④摂取量推定 のための濃度 採用の根拠		屋外大気濃度 大気中濃度は、測定: ng/m³とした。	結果かり	ら求めた 95 パーセ	ンタイ	イル値である 11		
			飲	料水		2. 2 (μg/L)		4. 4		0. 088		
	L F			④摂取量推定 のための濃度 採用の根拠		飲料水中濃度は、浄水測定結果から求めた 95 パーセンタイル値である 2.2 µg As/L とした。						
	の		食物			- (μg/g)	32		0. 64			
	摂取量	経路		④摂取量 のための 採用の相)濃度	食物からの推定摂取: 物からのヒ素摂取量の割合を 17%と仮定で 0.17 = 32 (μg/人)	のうち、 する。食	、本評価書の対象の	とする	無機ヒ素化合物		
			経口経路の合計		計	-		36		0. 73		
		その他	消	消費者製品等		-	-		-			
		④摂取量: 用の根拠	推定	のための源	 農度採	数理モデルによる暴	 数理モデルによる暴露量推定は行わないので		、測定値を採用する			
		全	経路	の合計値		-	36		0. 73			
	消費	者製品経由	の暴	素露		消費者製品からの暴いては考慮しない。	露はなり	いものと考えられる	るので	ので、本評価書にお		
有	生			①長期 0	急性	②生物種		③エンドポイン	۲	④NOEC 等の値		
害性	態毒	藻類 (NaAsO₂)		急性		Scenedesmus acutus (セネデスムス)		96 時間 EC ₅₀ 生長阻害		0. 0787 (mg/L)		
評価	性	甲殻類 (As ₂ O ₅)		急性		Cancer magister (アメリカイチョウガニ)		96 時間 LC ₅₀		0. 232 (mg/L)		
		魚類 (NaAsO ₂)	急性			Carassius auratus (キンギョ)		7 日間 LC ₅₀		0. 49 (mg/L)		

項目													
		採用した生物	とその理由		最小値	である	藻類(セ	ネデスムス)				
		疫学調査及び事例:経口経路の暴露による慢性影響は、高濃度のヒ素を含む汚染飲料水摂取による皮膚病変(過剰色素沈着、角化亢進)や末梢血管障害(四肢のしびれ、潰瘍形成、乾性壊疽等)、虚血性心疾患等であり、台湾で黒脚病(Blackfoot disease)として知られる。 米国 EPA(2005a)および ATSDR(2005)は台湾での横断研究から色素沈着と角化症の増加を指標にして、NOAEC を $9 \mu \text{ g/L}$ (換算値 NOAEL $0.8 \mu \text{ g/kg/H}$)と判断している。											
			摂取経路	経路 ①生物種		②投与期間· 方法		③エンドポイント		④NOAEL 等の値(換 算値)			
		反復投与	吸入経路	-		-			-		NOAEL 等を導出で きるデータはない		
	ヒ ト 健	毒性	経口経路	口経路 ヒト		疫学データ (台湾での横 断研究から)		色素沈着と角化症の 増加		NOAEL 0.8μg/kg 日		g/kg/	
	康		経皮経路		-		-		-			-	
		生殖・発生 毒性	-		-		-	-			評価を行わない		ない
			-						-				
		発がん性	IARCの評価結果:グループ1(ヒトに対して発がん性がある物質)										
			ユニットリスク:-										
		遺伝毒性	遺伝毒性判定の結果:無機ヒ素化合物は遺伝毒性を有すると判断。										
リス	生		①EEC (μg	EC (μg/L) ②NOEC等			/) _	MOE (NOEC	等	④不確実(系数積	<u>(5)</u>	判定
ク 評	態へ	リスク評価	4. 7	EC ₅₀	: 0. 078	0. 0787 17		100		0 詳細候補		細候	
価	の影		不確実係数積内訳:室内試験(10)急性毒性試験(100)評価者の判断(0.1)										
	響	リコメンデーション	ついて必要	なフィ	ィールト	ぶ調査の	実施や、	素の存在状況、存在形態及び水生生物への影響にや、人為発生源及び自然発生源の環境中濃度に対析及び評価を行う必要がある。					
	۲				1. 暴露	評価	2. NOAE	L 等	3. 1	ノスク評価			
	健							L 等換算 g/kg/日)	_	OE(NOAEL 摂取量)	②不確 係数積		③判 定
	康		吸入約	圣路	0.0	044		-		-	-		-
			経口経路		0.	0. 73		0. 8	0. 8 1. 1		10		詳細候補
			全経路	各						_			_
			不確多	ミ係数	積内訳	:個人差	をについ!	ての不確実	係数	(10)			
生殖・発生毒性								_		_			

	項目											
		発がん性		-	_	_	_	_	_			
		リコメン デーショ ン	らに1	食品特に海産		あり詳細な調査、解 れるヒ素化合物の化 が望まれる。						

備考 ①ヒ素は、環境中に種々の化学形態で存在すると考えられるが、環境中濃度の測定結果の多くは化学形態別の濃度ではなくヒ素の合計濃度である。そのため、水生生物生息環境における推定環境濃度(EEC)及びヒトの推定摂取量は、環境中での化学形態の区別はせず、ヒ素の合計濃度を用いて算出した。ただし食物中のヒ素については本評価書の対象とする無機化合物の割合を17%として計算した。

②対象物質の選定にあたってはヒ素及びその無機化合物のうち、製造・輸入量の実績や用途情報、また、環境中の生物及びヒト健康に対する有害性情報の有無等を考慮し、リスク評価の対象とする化合物を複数選定した。環境中の水生生物に対するリスク評価には、影響濃度として最も小さい(最も厳しい)無水亜ヒ酸ナトリウム $(NaAsO_2)$ の EC_{50} を採用した。そのため、本評価書では、リスクを大きく見積もっている可能性がある。

③本書の中で濃度、摂取量など mg/L、 μ g/kg/日などはいずれもヒ素純分換算の mgAs/L、 μ gAs/kg/日の意味である。

表-1 ヒ素及び代表的な無機ヒ素化合物の CAS-NO 及び物理化学的性状

化質管進令号物出促政番		1–252									
物質名						機化合物					
	金属ヒ素			三酸化二		ヒ酸	五酸化二ヒ素	ヒ化水素			
CAS 登録 番号	7440-38-2	2		1327-53-3		7778-39-4	1303-28-2	7784-42-1			
	黄色t素	灰色t素	黒色ヒ素	アルセノラ イト	クローテ゛ タイト						
外観	黄色固 体	灰色固体	黒色	白色 固体	白色 固体	データなし	白色固体	無色気体			
融点 (℃)	データ なし	817 (三重 点) (3.7MPa)	データな し	274	313	35. 5 (H ₃ AsO ₄ · 1/2H ₂ 0)	315(分解)	-116			
沸点 (°C)	データ なし	603 (昇華 点) 613 (昇 華点)	データな し	4	60	160 (脱水) (H ₃ AsO ₄ · 1/2H ₂ 0)	なし	-62. 5			
溶解性	データ なし	水:不溶	データなし	水: 20.5 g/kg H ₂ 0 (25°C) 水: 37g/L (20°C)		水: 3,020g/L (12.5°C) 水:易溶 (H ₃ AsO ₄ · 1/2H ₂ 0)	水: 658 g/kg H ₂ 0 (20°C) 水: 1,500 g/L(16°C)	水:難溶			

表-2 三酸化二ヒ素の輸入量 (トン)

			1 · · · · · · · · · · · · · · · · · · ·	- /	
年	1999	2000	2001	2002	2003
輸入量	796	680	603	554	491

ヒ素純分換算した値

表-3 金属ヒ素の製造・輸入量等(トン)

			_ 1007 4 3	- /	
年	1999	2000	2001	2002	2003
製造量 1)	55	75	45	60	68
輸入量	103	45	<0.5	3	42
輸出量	28	42	29	6	5
国内供給量 2)	130	78	16	57	105

- 1) 国内販売量
- 2) 国内供給量 = 製造量 + 輸入量 輸出量とした。
- <0.5: 0.5トン未満