				項目									
PRTR	番号:310		CAS-NO : 50)-00-0			初期リスク評価指針 Ver. 1.0						
物質	名:ホルムアル	デヒド											
	物理化学的	①外観	無色気体 ②融点			点	-92°C						
	性状	③沸点	−19. 5°C				(溶解度	55%					
		①濃縮性	水生生物への濃縮性は低いと推測。										
		②BCF	3.2(オクタノール/水分配係数 0.35 から計算)										
		③生分解性	良分解性と判定。										
一般情報	環境中運命	安定性	OH ラジカル: 反応速度定数は 9.4 × 10 ⁻¹² cm³/分子/秒 (25°C、測定値)。OH ラジカル濃度を 5 × 10 ⁵ ~ 1 × 10 ⁶ 分子/cm³ とした時の半減期は 20~40 時間。オゾン:ホルムアルデヒドはオゾンと事実上反応しない。 硝酸ラジカル: 反応速度定数は 5.8 × 10 ⁻¹⁶ cm³/分子/秒 (25°C、測定値)。 硝酸ラジカル濃度を 2.4 × 10 ⁸ ~ 2.4 × 10 ⁹ 分子/cm³ (10~100 ppt) とした時の半減期は 0.2~2 か月。 環境大気中:ホルムアルデヒドは 360 nm 以上の光を吸収するので、大気環境中では直接光分解され、直接光分解半減期は 0.23 日。 環境水中:水と反応してメチレングリコール及びパラホルムアルデヒドを生じる。また、水中の溶存酸素により酸化されてギ酸を生じる										
		環境中動態	環境水中に排出された場合は、主に生分解により除去されると推定される。 水中から大気中への揮散や、水中の懸濁物質への吸着と底質への移行は小 さいと考えられる。										
発	製造・輸出入 量等 (トン/ 年)		1997 年	199	8年	19	999年	2000年	2001年				
生		製造量	1, 408, 750	6 1, 232	1, 232, 149		263, 881	1, 234, 264	1, 063, 047				
源		輸入量	217	4	4		4	1	2				
情報		輸出量	671	72	28	1, 007		741	885				
TIA		国内供給量	1, 408, 302	2 1, 23	1, 425	1, 2	262, 878	1, 233, 524	1, 062, 164				
	用途情報	ェノール樹脂(原料:ポリアセタール樹脂 (29.5%) ユリア樹脂及びメラミン樹脂接着 耐脂 (6.3%) 合成ゴム (5.9%) 4,4'-ジフェニルメタンジイソシアネート (7.6%)										
	PRTR データ (2001 年度)	各媒体の 排出量	大気 (t)	水域(t)	土壌(t)							
		届出	549	83	<0.			19:大気、水域、土壌への排出量は、					
		裾切り	982	148	< 0.5		届出排出量の排出割合と同じと仮定し、 推定した。 非対象業種・家庭:大気、水域、土壌へ						
		非対象業種	98 817		0								
		家庭	1	0	0		の排出量は、物理化学的性状及び用途か						
		移動体	25, 207	25, 207 0			◦推定した。 §動体∶すべて大気へ排出されると推定						
		合計	26, 837	1, 048	<0.	5	した。	出量:1,010 ト					

						項目							
				送業種の届出・届 出量合計(上位 5 美									
	その 排出	他の源	自然発生源として、炭化水素の OH ラジカルやオゾンとの酸化による生成や植物の生長に伴いテルペンやイソプレンを排出する際に中間生成することや、また微生物による分解の際に生成するとの報告がある。また、山火事などの植物の燃焼や水中での日光によるフミン質からの生成が報告されている。自然発生源の他には、自動車等の排気ガス、たばこの煙や燃料等の燃焼などによる発生があると報告されている。室内における排出源については、たばこ、パーティクルボードや合板、家具や建造物が主たる排出源との報告がある。										
	排出シナ	リオ	大気への主たる排出経路は、移動体からの排出であり、水域への主たる排出経路は、医薬品としての使用からの排出と考えられる。また、室内環境における主たる排出経路はホルムアルデヒドを合成原料とした接着剤を用いた製品等からの排出と考えられる。										
暴露評					①検出地点/測定地点	_	検出 /検体	③検出 範囲	④95%値	⑤検出 限界	⑥調査年度 ・測定機関		
価			大気中濃度 (μg/m³)(室内)		-	_	/103	2. 8-569	140	不明	2000-2001 年 東京都衛生 研究所		
	測定値			I水中濃度 g/L)(AA-C 類型)	35/90 -		-	nd-4	2. 6	1	1999 年 環境庁		
				飲料水中濃度 (μg/L) 1,			_	nd-76	-	8	2002 年 水道技術研 究センター		
				列中濃度 g/g)	5/9 44/4		4/45	-	0. 49	0. 02	1999 年 日本食品分 析センター		
					①推定値		②使月	月したモデル	レの種類/値	の説明			
	推定濃度			i中濃度 g/m³)	3. 0	AIST-ADMER ver. 1. 関東地域、年間平:							
				l水中濃度 g/L)	4. 3			河川中化学物質濃度分布予測モデル 利根川水系、最大値					
	EEC(μg/L)			(μ g/L)	2. 6								
	EEC		採用	理由			中濃度の測定結果が、調査年度が新しく、測定地点数も ら EEC に採用する濃度として適切である。						
	と 摂取経路		i .		①摂取量推定に採用 した濃度の値			② 1 日 1 (推定摂取量 /日)		③1 日体重 kg 当たり 摂取量(μg/kg/日)		
	တ		大気	<u></u>	140 (μ	ιg/r	n ³)	:	2, 800		56		
	摂 吸入 経路			④摂取量推定 のための濃度 採用の根拠	いので、室 本数が確保	内2 !され	空気中源 れている	ドは、屋外大気中濃度より室内空気中濃度の方が高気中濃度を用いて暴露評価を行う。比較的多くの標いいる 2000 年から 2001 年の東京都の調査における					

							項目					
		経口経路	飲料水		7	6 (μ g/L)		150		3		
				④摂取量推 のための濃 採用の根拠	度		i水についての調査結果における最大値を水道水中のホルムアル :ド濃度として採用した。					
			食物		0.	49 (μg/g)		980		19. 6		
				④摂取量推定 のための濃度 採用の根拠		がある。	。この一世帯の作	任意	の食事からの化学物質暴露量に関する調査 意の連続3日間の朝食、昼食、夕食等を陰 をにおける95パーセンタイルを採用した。			
			経口経路の合計値				-		1, 130		23	
			消	費者製品等			_		-		-	
		その他		④摂取量推 のための濃 採用の根拠	度				-			
		全経路の合計値					-		3, 930		79	
	消費	者製品経印	由の剝	星 索路		ホルムアルデヒドの消費者製品からの暴露の一部は、建材や家具等からの放散による室内空気からの暴露に包括されると判断する。また、たばこの主流煙中に $3.46\sim104\mu\mathrm{g/}$ 本、副流煙中に $420\sim544\mu\mathrm{g/}$ 本のホルムアルデヒドが含まれていたとの分析結果が報告されている。しかし、喫煙は嗜好等による個人差が大きいなど多くの不確定要因を含み、喫煙に特化して評価するのが適切と判断し、本評価書においては考慮しない。						
有害			①長期 or 急性				1		③エンドポイント		④NOEC 等の 値	
性評	生態	藻類	魚性			Scenede (セネテ゛スム:	smus quadricau ฉ)	da	24 時間 EC ₅₀ 生長阻害、生長速度		14.7 (mg/L)	
価	毒	甲殼類	甲殼類 急性			Daphnia	pulex (צּיִי נוֹט pulex)		48 時間 EC ₅₀ 、遊泳阻	l害	5.8 (mg/L)	
	性	魚類 急性					saxatilis トバス、ハタ科)	96 時間 LC ₅₀			6. 7 (mg/L)	
		採用した生物とその理由 最も低濃度から影響のみられた甲殻類(れた甲殻類(ミジンコ)			
	П	疫学調査	及び	事例:一般σ	健原	康なヒト(の上気道への刺激に対する NOAEL を 0.1 mg/m³と判断する。					
	健	反復投与 毒性	摂取経路		1):	生物種	②投与期間・ 方法	3)エンドポイント		NOAEL 等の値 換算値	
	康	į.		吸入経路		26 週間・ サル 吸入暴露		鼻甲介粘膜の化生		((OAEL: 0.2 ppm 0.24 mg/m³) 0.039 mg/kg/ 1 相当)	
				経口経路		ラット Vistar	2 年間・ 飲水投与		腺胃の過形成、前胃の限 局性角化亢進及び胃炎		DAEL: 260 mg/L 5 mg/kg/日 当)	

					項目								
			経皮経路	_	_		-			-			
		生殖·発生 毒性											
		発がん性	吸入経路	ラット F344	24 か月 吸入暴		鼻腔の扁平上 <u>原</u> E増加	支がんの発	(7. 2	: 6 ppm mg/m³) 6 mg/kg/日			
			発がん性試験情報:ヒトの鼻咽頭がんに対する十分な科学的根拠が得られ、また鼻腔と副鼻腔のがんに対する限定された証拠と、白血病に対する強い関連が認められるとして、IARC はグループ 2A(ヒトに対して恐らく発がん性がある物質)からグループ 1(ヒトに対して発がん性がある物質)に変更した。										
			IARC の評価結果:グループ1 (ヒトに対して発がん性がある物質) 2004 年に分類をグループ 2A から1 に変更										
			ユニットリスク:-										
		遺伝毒性	遺伝毒性判	定の結果:遺伝	云毒性を	有すると判	 と判断。						
IJ	生態	リスク	①EEC(μg/l	L) 2NOEC ¥	(mg/L)	3M0E (NO	OEC 等/EEC)	EC 等/EEC) ④不確実例		⑤判定			
スク			2. 6	EC ₅₀ :	5. 8		, 200	100		影響なし と判断			
評価	への影響	評価	不確実係数積の内訳:室内試験(10)急性毒性試験(100)試験の種類、質等(0.1)* *3つの栄養段階を代表する3生物種の急性毒性値が得られており、一般的に低濃度から化学物質の影響が発現しやすい種(ミジンコやエビ類)を含めて広い範囲の種のデータが得られているため										
		リコメンデ-	ーション	-									
	۲			1. 暴露評価	2. NOA	EL 等	3. リスク語	3. リスク評価					
	健			①摂取量 (µg/kg/日)	_	EL 等換算 /kg/日)	①MOE(NO 等/摂取量	_	笙実係	③判定			
	康		吸入経路	56	NOAE	L: 0.039	0. 70	2	00	詳細候補			
		反復投与 毒性 生殖・発生 毒性	経口経路	23	NOA	NEL : 15	650	1	00	影響なし と判断			
			全経路	-		_	-		_	_			
			不確実係数	不確実係数積内訳:吸入/種差(10)個人差(10)試験期間(2)、経口/種差(10)·						個人差(10)			
			-	_		-	_		-	_			
		発がん性	吸入経路	56	NOAE	EL: 0.96	17	1,	000	詳細候補			
		元/701王	不確実係数	積内訳:種差([10] 個人	差 (10) 発か	 ドん性(10)						

	項目							
		リコメンデーション	ヒト健康に悪影響を及ぼすことが示唆され、詳細なリスク評価を行う必要がある候補物質である。特に、室内空気中濃度について詳細な評価をする必要がある。なお、閾値のある発がん物質と仮定した場合、発がん性についてもホルムアルデヒドはヒト健康に悪影響を及ぼすことが示唆され、詳細なリスク評価を行う必要がある候補物質である。また、ヒトへの急性影響として上気道への刺激に対する NOAEL が 0.1 mg/m3 と考えられ、室内空気中濃度が上回っている場合がある。したがって、短期間の高濃度暴露により刺激性のリスクを生じる可能性がある。					
備考	• :							