

#### Use of read-across for the assessment of biodegradation and bioaccumulation potential of chemicals under Japan Chemical Substances Control Law

June 2016 National Institute of Technology and Evaluation, Japan Chemical Management Center



Use of read-across for the assessment under the Japan Chemical Substances Control Law (CSCL);

- 1. Biodegradation assessment
- 2. Bioaccumulation assessment
  - 2.1 Evaluation method using analogy rule
  - 2.2 Evaluation method using logD





### **1. BIODEGRADATION ASSESSMENT**



# Concept of read-across for the biodegradation assessment under the CSCL

- The biodegradability of untested chemicals is assessed by using the experimental data of source chemicals.
- The source chemical used for read-across under the CSCL is defined as similar chemical on the basis of the following two factors related to metabolism of microorganism.
  - Structural similarity (eg. Basic skeleton, organic functional group and its substitution position)
  - Chemico-physical properties (eg. resolvability and stationarity in water)



# Use of read-across for the biodegradation assessment under the CSCL

- ✓ In the review of the biodegradation assessment of chemicals under the CSCL, the read-across is accepted as the following major two types;
  - A) Target chemical and source chemicals are the relationship between the acid and its salts, such as metallic and ammonium salt.
  - B) If there exist two or more similar chemicals whose biodegradation test data are available, it is considered that the biodegradation potential of a target chemical is evaluated by interpolating data.



#### Case study (Rule A)

The relationship between the acid and its salts

→ Target chemicals are assessed as "Readily biodegradable" by read-across.

|                  | Source chemical                                                                                                                                                            |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Chemical name    | Oleic acid                                                                                                                                                                 |  |
| CAS No.          | 112-80-1                                                                                                                                                                   |  |
| MITI No.         | 2-609, 2-975                                                                                                                                                               |  |
| Structure        | Соон                                                                                                                                                                       |  |
| Biodegradability | Readily biodegradable<br>(Pub. Date: 1993/12/28)<br><u>Biodegradation test data</u><br>Method: OECD TG 301C<br>Term: 28 days<br>Degradation value:<br>BOD : 78%, GC : 100% |  |

nite

|                                |                                                                                     |                                         |                                        | Target chemical 1                      |
|--------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------|
|                                |                                                                                     | 1                                       | Chemical name                          | Sodium (Z)-oleate                      |
|                                | Source chemical                                                                     |                                         | CAS No.                                | 143-19-1                               |
| al name                        | Oleic acid                                                                          |                                         | MITI No.                               | 2-611                                  |
| No.                            | 112-80-1                                                                            |                                         |                                        |                                        |
| No.                            | 2-609, 2-975                                                                        |                                         |                                        |                                        |
| <b>.</b>                       |                                                                                     |                                         | Structure                              |                                        |
| ture                           | Соон                                                                                |                                         | Biodegradability                       | Readily biodegradable<br>(Read-across) |
|                                | Readily biodegradable                                                               |                                         |                                        | Target chemical 2                      |
|                                | (Pub. Date: 1993/12/28)                                                             |                                         | Chemical name                          | Potassium (Z)-oleate                   |
|                                |                                                                                     |                                         | CAS No.                                | 143-18-0                               |
|                                | <u>Biodegradation test data</u>                                                     |                                         | MITI No.                               | 2-611, 9-1677                          |
| dability                       | Method: OECD TG 301C<br>Term: 28 days<br>Degradation value:<br>BOD : 78%, GC : 100% |                                         | Structure                              | С00-К+                                 |
| Biodegradability               |                                                                                     |                                         | Readily biodegradable<br>(Read-across) |                                        |
| *METI website (Japanese only): |                                                                                     |                                         |                                        |                                        |
| http://ww                      | w.meti.go.jp/committee/summary                                                      | /////////////////////////////////////// | 5/pdt/118_02_02.pdt                    | 6                                      |

### Case study (Rule B)

|                  | Source chemical 2                                       | Source chemical 3                                   | Source chemical 4        | Source chemical 5                                   |
|------------------|---------------------------------------------------------|-----------------------------------------------------|--------------------------|-----------------------------------------------------|
| Chemical name    | Octan-1-ol                                              | Tridecyl alcohol                                    | Hexadecan-1-ol           | 1-hexacosanol                                       |
| CAS No.          | 111-87-5                                                | 112-70-9                                            | 36653-82-4               | 506-52-5                                            |
| MITI No.         | 2-217                                                   | 2-217                                               | 2-217, 2-3704            | 2-217                                               |
| Structure        | $CH_3(CH_2)_7OH$                                        | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> 0H | $CH_{3}(CH_{2})_{15}OH$  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>25</sub> 0H |
|                  | Biodegradation test information (OECD TG 301C, 28 days) |                                                     |                          |                                                     |
|                  |                                                         | <u>odegradable</u>                                  | gradable                 |                                                     |
|                  | Degradation value:                                      | Degradation value:                                  | Degradation value:       | Degradation value:                                  |
| Biodegradability | BOD : 89%                                               | BOD : 88%                                           | BOD : 86%                | BOD : 75%                                           |
| Diouegrauability | GC : 100%                                               | GC : 100%                                           | GC : 95%                 | GC : 97%                                            |
|                  | Pub. Date:<br>2002/11/08                                |                                                     | Pub. Date:<br>2002/03/26 | Pub. Date:<br>1982/12/28                            |



#### Target chemicals are assessed as

"Readily biodegradable" by interpolating data.

|                  | Target chemical 3                   | Target chemical 4                                   | Target chemical 5       |
|------------------|-------------------------------------|-----------------------------------------------------|-------------------------|
| Chemical name    | Decan-1-ol                          | 1-Eicosanol                                         | 1-Docosanol             |
| CAS No.          | 112-30-1                            | 629-96-9                                            | 661-19-8                |
| MITI No.         | 2-217                               | 2-217                                               | 2-217                   |
| Structure        | $CH_3 (CH_2)_9 OH$                  | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>19</sub> OH | $CH_{3}(CH_{2})_{21}OH$ |
| Biodegradability | Readily biodegradable (Read-across) |                                                     |                         |

\*METI website (Japanese only):

http://www.meti.go.jp/committee/summary/0004475/pdf/122\_01\_03.pdf

Use of read-across for the risk assessment of chemicals under the CSCL

<u>121 existing chemicals were assessed as "Readily</u> <u>biodegradable" by read-across</u> in order to perform the risk assessment under the CSCL.

| Financial year | Number of existing chemicals |
|----------------|------------------------------|
| 2010           | 2                            |
| 2011           | 4                            |
| 2012           | 106                          |
| 2013           | 9                            |
| <u>Total</u>   | <u>121</u>                   |





### 2. BIOACCUMULATION ASSESSMENT



# Use of read-across for the bioaccumulation assessment under the CSCL

 In the bioaccumulation assessment of chemicals under the CSCL, the read-across was accepted as the following major four types;

**O 2.1 Bioaccumulative analogy rule**\*3

- $\bigcirc$  2.2 Log D < 2.5 (in case of the ionic substance only)
  - 2.3 MW  $\geq$  800 (When a chemical contain two or more halogen element, MW  $\geq$  1,000)

2.4 Log P < 3.5







### 2.1 BIOACCUMULATIVE ANALOGY RULE





# Bioaccumulative analogy rule is announced in September 2013

 Ministry of Economy, Trade and Industry in Japan (METI) announced a new guidance of the bioaccumulation assessment by using analogous and QSAR, to clarify the criteria for judgement of the analogue approach for the bioaccumulation assessment under the CSCL.

http://www.meti.go.jp/policy/chemical\_man agement/english/files/laws/bioaccumulation \_analog\_approach.pdf



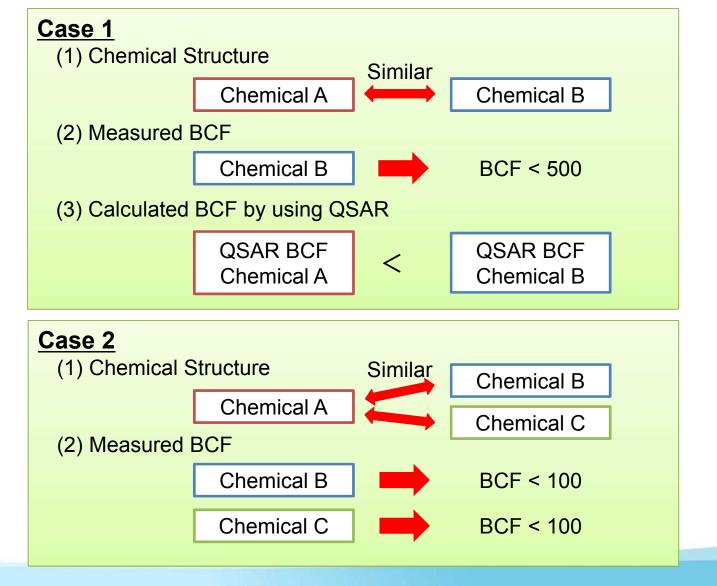
nite

New guidance on bioaccumulation assessment by using analogue approach and QSAR

Bioaccumulation assessment by using;

- A) Read-across and QSAR.
- B) Read-across and the comparison of hydrophilicity (polarity) by HPLC.




#### (Rule A) Bioaccumulation assessment by using read-across and QSAR

- If chemical A meets the following criteria, chemical A can be assessed to be <u>"not highly bioaccumulative"</u>:
  - (1) Chemical A is similar in structure to chemical B. (specifically as follows):
    - i. Chemical A has the same basic skeleton as chemical B and chemical A's structure is partially changed from chemical B, or
    - ii. Chemical A is an isomer of chemical B.
  - (2) Measured BCF of chemical B is below 500.
  - (3) Bioaccumulation of chemical A is estimated in a rational way to be almost the same as or lower than chemical B based on their chemical structure. (specific conditions as follows)
    - i. Calculated BCF by using QSAR of chemical A is almost the same as or lower than measured and calculated BCF of chemical B.
    - ii. Two or more similar chemical B have measured BCF <100.
- \*4 Recommended QSAR model is either BCFBAF (EPI SUITE) or BCF base-line model (OASIS CATALOGIC).

\*5 Japan added the published measured BCF data on the website in this month in order to facilitate the above approach. <u>http://www.nite.go.jp/en/chem/qsar/cscl\_data.html</u>

#### Example (1)

#### Chemical A is "not highly bioaccumulative" in both cases.



nite

### Case study (Rule A)

- Source chemicals and target chemical fulfil three conditions of the analogy rule A (See page 14 and 15).
- The bioaccumulation potential of target chemical can be judged <u>"not highly bioaccumulative\*1</u>" under the CSCL.

| Name                 | Structure | Calculated BCF*2 | Measured BCF                         |  |
|----------------------|-----------|------------------|--------------------------------------|--|
| Target<br>chemical   |           | 196              | <u>Not highly</u><br>bioaccumulative |  |
| Source<br>chemical 1 |           | 481              | 485                                  |  |
| Source<br>chemical 2 |           | 433              | 491                                  |  |

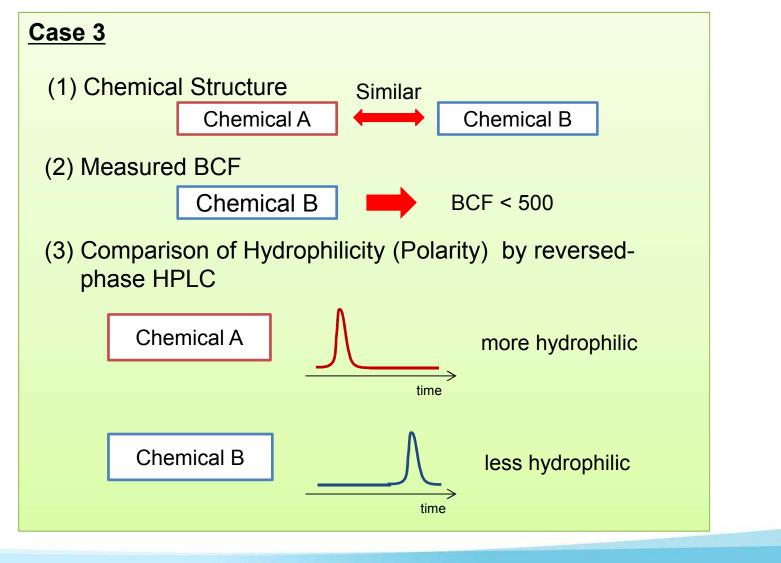
\*1 CSCL defines "Not highly bioaccumulative" as BCF less than 5,000.

\*2 Calculated by BCFBAF v.3.01(US EPA)

#### (Rule B) Bioaccumulation assessment based on the comparison of hydrophilicity (Polarity) by HPLC.

If chemical A meets the following criteria, chemical A can be assessed to be <u>"not highly bioaccumulative"</u>:

- (1) Chemical A is similar in structure to chemical B.(specifically as follows):
  - Chemical A has the same basic skeleton as chemical B and chemical A's structure is partially changed from chemical B, or


ii. Chemical A is an isomer of chemical B.

(2) Measured BCF value of chemical B is below 500.

- (3) It is observed that chemical A is more hydrophilic (polar) than chemical B by reversed-phase HPLC.
- \* This analogous method does not apply to surfactants, organic metallic compounds, low purity compound and inorganic compound.

#### Example (2)

#### Chemical A is "not highly bioaccumulative".



nite

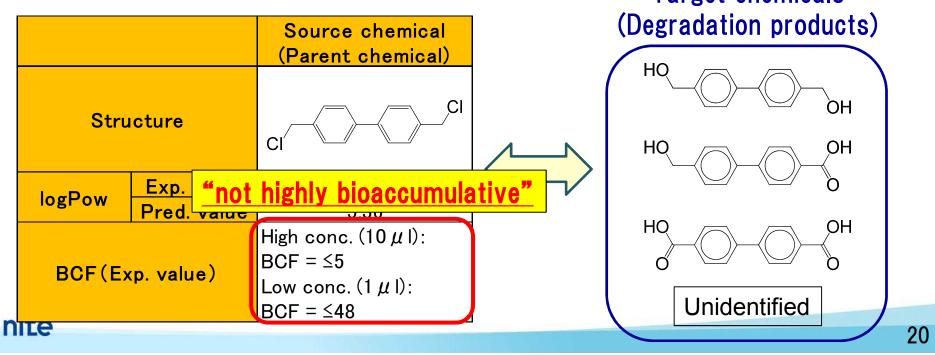
18

#### Case study (Rule B)

- Target Chemicals and Endpoint -

✓ Target chemicals:

Biodegradation/hydrolysis products of 4, 4'-Bis-(chloromethyl) -1, 1'-biphenyl (source chemical 1) in the biodegradation test (OECD TG 301C).


✓ Target Endpoint:

**Bioaccumulation potential** 

|           | Target chemical 1<br>(Biodegradation/hydrolysis<br>Product 1) | Target chemical 2<br>(Biodegradation Product 2) | Target chemical 3<br>(Biodegradation Product 3) | Target chemical 4<br>(Biodegradation Product 4) |
|-----------|---------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|
| Structure | НО                                                            | HOOH                                            | HO OH                                           | Unidentified                                    |
| CAS No.   | -                                                             | -                                               | 787-70-2                                        | -                                               |
| Chemical  | 4,4-biphenyl dimethanol                                       | 4'-(hydroxymethyl)-[1,1'-                       | biphenyl-4,4'-dicarboxylic acid                 | _                                               |
| name      |                                                               | biphenyl]-4-carboxylic acid                     |                                                 |                                                 |
| nite      |                                                               |                                                 |                                                 | 10                                              |

#### Case study (Rule B)

- Relationship between Source Chemical and Target Chemicals -
- Source chemical and target chemicals have the relationship between a parent chemical and its degradation products.
- It is thought that <u>structural similarities must be high</u>, <u>because it is assumed that the structure is partially kept</u> <u>during degradation</u>.



## - The result of a polarity comparison -

- ✓ The result of a polarity comparison of source chemical with target chemical (obtained by reverse-phase HPLC) show that <u>target chemicals are more hydrophilic than source chemical.</u>
- ✓ The bioaccumulation potential of target chemicals can be judged <u>"not highly bioaccumulative</u>" under the CSCL.

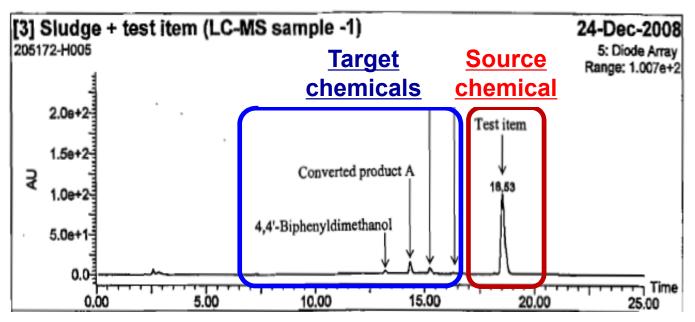



Fig. The test results of a hydrophilic comparison between parent chemical and degradation products by reverse-phase HPLC.



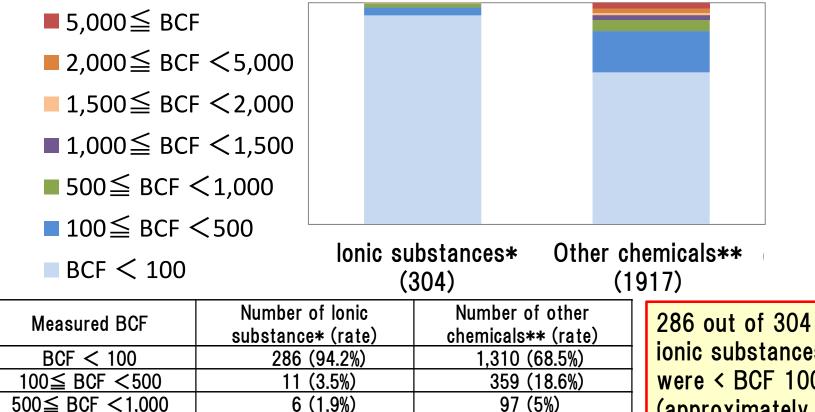
### 2.2 LOG D < 2.5 (IN CASE OF THE IONIC SUBSTANCE ONLY)



#### Background

- ✓ If log P is <3.5, that substance is assessed to be "not highly bioaccumulative".
- Ionic substances are known as "not highly bioaccumulative" in general (detail information see page 24 and 25).
- However, the bioaccumulation assessment for an ionic substance is measured by animal testing, because measuring its logP in neutral form is difficult.
- Therefore, in order to simplify bioaccumulation assessment of ionic substances, <u>a new guidance to use</u> log D (the partition coefficient determined around a pH of 7) was made by METI in June, 2014.




# Analysis of the bioaccumulation potential of ionic substances under the CSCL

<Analysis detail>

- 818 existing chemicals and 1411 new chemicals assessed previously from 1975 to October 2012 under the CSCL were listed.
- NITE made a comparison of BCF value between ionic substances<sup>\*</sup> and other chemicals<sup>\*\*</sup>.
  - ionic substances : carboxylic acid, sulfonic acid and its metal salt(except 8 perfluoro acids), quaternary amine and zwitterion.
  - **\*\*** Other chemicals: Substances except ionic substances and perfluoro acid.



#### **Result of data analysis**



ionic substances were < BCF 100. (approximately 94 %)

\* ionic substances : carboxylic acid, sulfonic acid and its metal salt(except 8 perfluoro acids), quaternary amine and zwitterion.

43 (2.2%)

19 (1%)

39 (2%)

1.917 (100%)

50 (2.6%)

nite **\*\*** Other chemicals: Substances except ionic substances and perfluoro acid.

0 (0%)

0 (0%)

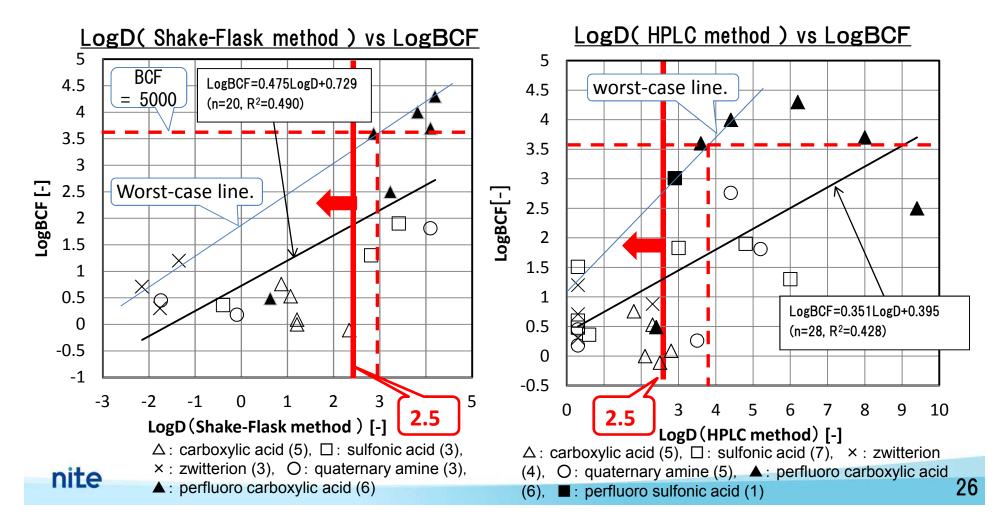
0 (0%)

304 (100%)

1 (0.3%)

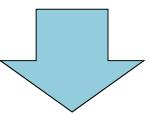
 $1.000 \le BCF < 1.500$ 

 $1.500 \le BCF < 2.000$ 


 $2.000 \le BCF < 5.000$ 

5.000≦ BCF

合計


#### logBCF vs. logD plot for ionic substances

- ✓ In order to study relationship between logBCF and logD (pH=7), we measured LogD of ionic substances, whose measured BCF value is available.
- Measuring methods are Shake-Flask method (20 substances) and HPLC method (28 substances).



#### Conclusion

- Bioaccumulation assessment of ionic substances using logD -
- ✓ Most ionic substances are "not highly bioaccumulative" under the CSCL.
- ✓ There was the weak correlation between log BCF and Log D of ionic substances.



The bioaccumulation potential of ionic substances is possible to assess by using criterion value (Log D < 2.5).



# The judgement rule for the bioaccumulation assessment of ionic substances was announced in June 2014.

Ministry of Economy, Trade and Industry in Japan (METI) announced <u>a new guidance of the bioaccumulation</u> <u>assessment by using logD.</u>

イオン性を有する新規化学物質の生物蓄積性の判定について(お知らせ)

平成26年6月30日

厚生労働省医薬食品局審查管理課化学物質安全対策室 経済産業省製造産業局化学物質管理課化学物質安全室 環境省総合環境政策局環境保健部企画課化学物質審查室

新規化学物質の届出に係る法第4条第1項に基づく判定については、「新規化学物質 に係る試験並びに優先評価化学物質及び監視化学物質に係る有害性の調査の項目等を定 ※Japanese Only

http://www.meti.go.jp/policy/chemical\_management/kasinhou/files/todoke/shink nite i/140630\_logD.pdf

#### **Detail information of the judgement rule**

- ✓ If LogD of an ionic compound (e.g. sulfonic acids, carbonic acids, zwitterionic substances, quaternary amines, etc.) is < 2.5, that chemical substance can be assessed to be <u>"not highly bioaccumulative".</u>
- This method can not apply to any compounds which partially includes trifluoromethyl (CF3-) or tetrafluoroethylene (-CF2-CF2-) structure in their structure.
- \*Under this method, "an ionic compound which is difficult to measure log P in undissociated state" means, in principle, a compound whose pKa is less than 3 for acids and more than 11 for bases.
- \*This method does not apply to surfactants, mixture which has distribution of molecular weight, organic metallic compound, low purity compound (except for HPLC method) and inorganic compound.

XPrier consultation with METI/NITE is highly recommended.

%Both Shake-Flask method and HPLC method are applicable to measure log D.



# The number of chemicals for the bioaccumulation assessment notified

#### 2.1 Bioaccumulative analogy rule

| Period                | Number of chemicals |                   |
|-----------------------|---------------------|-------------------|
| Oct. 2012 - Sep. 2013 | 10                  | Before announced. |
| Oct. 2013 - Sep. 2014 | 27                  |                   |
| Oct. 2014 - Sep. 2015 | 14                  |                   |
| Oct. 2015 - Jan. 2016 | 6                   |                   |

#### <u>2.2 log D <2.5</u>

| Period                | Number of chemicals |
|-----------------------|---------------------|
| July 2014 - Mar. 2015 | 3                   |
| Apr. 2015 – Jan. 2016 | 4                   |





### Thank you for your kind attention.

