有害性評価書
Ver. 1.0
No.119

無水マレイン酸

Maleic anhydride
化学物質排出把握管理促進法政令号番号：1-313
CAS 登録番号：108-31-6

新エネルギー・産業技術総合開発機構
委託先 財団法人 化学物質評価研究機構
委託先 独立行政法人 製品評価技術基盤機構
目次

1. 化学物質の同定情報 .. 1
 1.1 物質名 ... 1
 1.2 化学物質審査規制法官報公示整理番号 .. 1
 1.3 化学物質排出把握管理促進法政令号番号 ... 1
 1.4 CAS 登録番号 ... 1
 1.5 構造式 .. 1
 1.6 分子式 .. 1
 1.7 分子量 .. 1

2. 一般情報 .. 1
 2.1 別名 .. 1
 2.2 純度 .. 1
 2.3 不純物 .. 1
 2.4 添加剤又は安定剤 ... 1
 2.5 現在の我が国における法規制 .. 1

3. 物理化学的性状 .. 2

4. 発生源情報 .. 3
 4.1 製造・輸入量等 ... 3
 4.2 用途情報 .. 3
 4.3 排出源情報 .. 4
 4.3.1 化学物質排出把握管理促進法に基づく排出源 .. 4
 4.3.2 その他の排出源 .. 5
 4.4 環境媒体別排出量の推定 .. 5
 4.5 排出シナリオ .. 5

5. 環境中運命 .. 6
 5.1 大気中での安定性 ... 6
 5.2 水中での安定性 ... 7
 5.2.1 非生物的分解性 .. 7
 5.2.2 生分解性 .. 7
 5.2.3 下水処理による除去 .. 7
 5.3 環境中での動態 ... 7
 5.4 生物濃縮性 .. 8
6. 環境中の生物への影響

6.1 水生生物に対する影響

6.1.1 微生物に対する毒性

6.1.2 藻類に対する毒性

6.1.3 無脊椎動物に対する毒性

6.1.4 魚類に対する毒性

6.1.5 その他の水生生物に対する毒性

6.2 陸生生物に対する影響

6.2.1 微生物に対する毒性

6.2.2 植物に対する毒性

6.2.3 動物に対する毒性

6.3 環境中の生物への影響 (まとめ)

7. ヒト健康への影響

7.1 生体内運命

7.2 疫学調査及び事例

7.3 実験動物に対する毒性

7.3.1 急性毒性

7.3.2 刺激性及び腐食性

7.3.3 感作性

7.3.4 反復投与毒性

7.3.5 生殖・発生毒性

7.3.6 遺伝毒性

7.3.7 発がん性

7.4 ヒト健康への影響 (まとめ)

文献

有害性評価実施機関名，有害性評価責任者及び担当者一覧

有害性評価書外部レビュー一覧
1. 化学物質の同定情報
1.1 物質名：無水マレイン酸
1.2 化学物質審査規制官報公示整理番号：2-1101
1.3 化学物質排出把握管理促進法政令号番号：1-313
1.4 CAS登録番号：108-31-6
1.5 構造式

\[\begin{array}{c}
\text{O} \\
\text{O} \\
\end{array} \]

1.6 分子式：C₄H₂O₃
1.7 分子量：98.06

2. 一般情報
2.1 別名
2,5-フランジオン、2,5-ジオキソフラン、マレイン酸無水物、2,5-ジヒドロ-2,5-ジオキソフラン

2.2 純度
99 %以上 (一般的な製品) (化学物質評価研究機構, 2004)

2.3 不純物
マレイン酸 (一般的な製品) (化学物質評価研究機構, 2004)

2.4 添 加 剤 又 は 安 定 剤
無添加 (一般的な製品) (化学物質評価研究機構, 2004)

2.5 現在の我が国における法規制
化学物質排出把握管理促進法：第一種指定化学物質
労働基準法：疾病化学物質
労働安全衛生法：名称等を通知すべき有害物
海洋汚染防止法：有害液体物質 D 類 (溶融状のもの)
船舶安全法：腐食性物質
航空法：腐食性物質
港則法：腐食性物質 (溶融状のもの)
3. 物理化学的性状
無水マレイン酸は、容易に加水分解されてマレイン酸になるので、マレイン酸 (CAS 登録番号 110-16-7) についても併記する。

a. 無水マレイン酸

外観: 白色固体 (IPCS, 2003)
融点: 52.85℃ (Merck, 2001)
沸点: 202.0℃ (Merck, 2001)
引火点: 102℃ (密閉式) (IPCS, 2003 ; NFPA, 2002)
発火点: 477℃ (IPCS, 2003 ; NFPA, 2002)
爆発限界: 1.4~7.1 vol % (空気中) (IPCS, 2003 ; NFPA, 2002)
比重量: 1.48 (Merck, 2001)
蒸気密度: 3.38 (空気 = 1, 計算値) (Verschueren, 2001)
蒸気圧: 0.007 Pa (20℃), 0.03 Pa (30℃) (Verschueren, 2001)
分配係数: データなし (容易に加水分解されるため)
解離定数: 解離基なし
スペクトル: 主要マススペクトルフラグメント
 m/z 54 (基準ピーク = 1.0), 26 (0.95), 98 (0.20), 25 (0.12)
 (産業技術総合研究所, 2004)
吸着性: データなし (容易に加水分解されるため)
溶解性: 水: データなし (容易に加水分解されてマレイン酸になるため)(5.2.1参照)
 アセトン: 2,270 g/kg (25℃), クロロホルム: 525 g/kg (25℃),
 ベンゼン: 500 g/kg (25℃), トルエン: 234 g/kg (25℃),
 四塩化炭素: 6.0 g/kg (25℃) (Merck, 2001)
ヘンリー定数: データなし (容易に加水分解されるため)
換算係数: (気相, 20℃) 1 ppm = 4.08 mg/m³, 1 mg/m³ = 0.245 ppm (計算値)
その他: 昇華性あり (Merck, 2001)
容易に加水分解されてマレイン酸になる (5.2.1参照)

b. マレイン酸

分子式: C₄H₄O₄
分子量: 116.07
外観: 白色固体 (Merck, 2001)
融点: 138~139℃ (水溶液から結晶化した場合) (Merck, 2001)
130~131℃ (ベンゼン溶液から結晶化した場合) (Merck, 2001)
沸点: なし

注: 加熱により、一部はフマル酸 (trans 体, 融点 287℃) となる (Merck, 2001)
引火点: データなし
発火点: データなし
爆発限界: データなし
比重: 1.59 (Merck, 2001)
蒸気密度: 4.00 (空気 = 1, 計算値)
蒸気圧: 0.048 Pa (25℃, 外挿値) (Yaws, 1994)
分配係数: オクタノール/水分配係数 log Kow = -0.48 (測定値), 0.05 (推定値) (SRC: KowWin, 2004)
解離定数: pKa1 = 1.910 (25℃), pKa2 = 6.33 (25℃) (Dean, 1999)
スペクトル: 主要マススペクトルフラグメント
m/z 72 (基準ピーク = 1.0), 45 (0.66), 26 (0.46), 27 (0.36) (産業技術総合研究所, 2004)
溶解性: 水: 780 g/L (25℃) (IPCS, 2003)
ヘンリー定数: 1.37×10⁻⁷ Pa・m³/mol (1.35×10⁻¹² atm・m³/mol) (25℃, 推定値) (SRC: HenryWin, 2004)
換算係数: (気相, 20℃) 1 ppm = 4.83 mg/m³, 1 mg/m³ = 0.207 ppm (計算値) (Merck, 2001)
その他: 強刺激性物質 (Merck, 2001)

4. 発生源情報
4.1 製造・輸入量等
無水マレイン酸の 1999 年から 2003 年までの 5 年間の製造量、輸入量等を表 4-1 に示す (経済産業省, 2004; 財務省, 2005)。

<table>
<thead>
<tr>
<th>年</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>132,480</td>
<td>131,062</td>
<td>117,379</td>
<td>102,771</td>
<td>109,187</td>
</tr>
<tr>
<td>輸入量</td>
<td>1,454</td>
<td>158</td>
<td>186</td>
<td>72</td>
<td>30</td>
</tr>
<tr>
<td>輸出量</td>
<td>8,747</td>
<td>12,020</td>
<td>14,471</td>
<td>11,434</td>
<td>13,023</td>
</tr>
<tr>
<td>国内供給量</td>
<td>125,187</td>
<td>119,200</td>
<td>103,094</td>
<td>91,409</td>
<td>96,194</td>
</tr>
</tbody>
</table>

(製造量: 経済産業省, 2004; 輸入量: 財務省, 2005)
国内供給量 = 製造量 + 輸入量 - 輸出量

4.2 用途情報
無水マレイン酸の用途及びその使用割合を表 4-2 に示す (化学工業日報, 2003)。無水マレイン酸の用途は、主に樹脂用途 (不飽和ポリエステル樹脂、樹脂改質剤等) とフマル酸合成原料である。
表 4-2 無水マレイン酸の用途別使用量の割合

<table>
<thead>
<tr>
<th>用途</th>
<th>割合 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>フマル酸合成原料</td>
<td>26.1</td>
</tr>
<tr>
<td>合成樹脂原料 (不飽和ポリエステル樹脂)</td>
<td>24.2</td>
</tr>
<tr>
<td>樹脂改質剤原料</td>
<td>10.1</td>
</tr>
<tr>
<td>イミド類合成原料</td>
<td>6.7</td>
</tr>
<tr>
<td>紙サイズ用樹脂原料 (紙表面に塗工する樹脂)</td>
<td>3.4</td>
</tr>
<tr>
<td>活性剤原料</td>
<td>3.0</td>
</tr>
<tr>
<td>塩化ビニル安定剤原料</td>
<td>0.7</td>
</tr>
<tr>
<td>塩料・インキ用樹脂原料</td>
<td>0.5</td>
</tr>
<tr>
<td>農薬原料</td>
<td>0.4</td>
</tr>
<tr>
<td>その他</td>
<td>24.9</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
</tr>
</tbody>
</table>

(化学工業日報, 2003) をもとに作成した。
1) 食品添加用が 11.8%含まれる。

4.3 排出源情報

4.3.1 化学物質排出把握管理促進法に基づく排出源

化学物質排出把握管理促進法に基づく「平成 14 年度届出排出量及び移動量並びに届出外排出量の集計結果」(経済産業省, 環境省, 2004a) (以下, 2002 年度 PRTR データ) によって, 無水マレイン酸は 1 年間に全国合計で届出事業者から大気へ 6 トン, 公共用水域へ 121 kg 排出され, 廃棄物として 375 トン, 下水道に 13 トン移動している。土壌への排出はない。ここでの値には, マレイン酸としての排出量, 移動量は含まれていない。

届出外排出量としては, 対象業種の届出外事業者から 47 kg, 非対象業種, 家庭, 移動体からの排出は推計されていない。

a. 届出対象業種からの排出量と移動量

2002 年度 PRTR データに基づき, 無水マレイン酸の届出対象業種別の排出量と移動量を表 4-3 に示した (経済産業省, 環境省, 2004a,b)。

届出対象業種からの無水マレイン酸の排出量のうち, ほとんどは化学工業からの大気への排出である。また, 全体的に環境への排出量よりも, むしろ廃棄物としての移動量のほうが多い。

表 4-3 無水マレイン酸の届出対象業種別の排出量及び移動量 (2002年度実績)(トン/年)

<table>
<thead>
<tr>
<th>業種名</th>
<th>届出</th>
<th>届出外</th>
<th>届出と届出外の排出量合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>排出量</td>
<td>移動量</td>
<td>排出計</td>
</tr>
<tr>
<td></td>
<td>大気</td>
<td>公共用水域</td>
<td>土壌</td>
</tr>
<tr>
<td>化学工業</td>
<td>6</td>
<td>＜0.5</td>
<td>0</td>
</tr>
<tr>
<td>プラスチック製品製造業</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>食料品製造業</td>
<td>＜0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>繊維工業</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
4.3.2 その他の排出源
その他の排出源に関する情報は調査した範囲では入手できなかった。

4.4 環境媒体別排出量の推定
各排出源における無水マレイン酸の環境媒体別排出量を表 4-4 に整理した（製品評価技術基盤機構, 2005）。
その際、2002 年度 PRTR データに基づく届出対象業種の届出外事業者からの排出量については、届出データにおける業種ごとの大気、水域、土壌への排出割合を用いて、その環境媒体別の排出量を推定した。
以上のことから、無水マレイン酸は、1 年間に全国で、大気へ 6 トン、公共用水域へ 121 kg 排出され、土壌への排出はないと推定した。ただし、廃棄物としての移動量及び下水道への移動量については、各処理施設における処理後の環境への排出を考慮していない。

| 表 4-4 無水マレイン酸の環境媒体別排出量 (2002年度実績)(トン/年) |
|-----------------|-----------------|-----------------|
| 排出区分 | 大気 | 公共用水域 | 土壌 |
| 対象業種届出 | 6 | <0.5 | 0 |
| 対象業種届出外 1) | <0.5 | <0.5 | 0 |
| 合計 | 6 | <0.5 | 0 |

(製品評価技術基盤機構, 2005)
1) 大気、水域、土壌の排出量は、業種ごとの届出排出量の排出割合と同じと仮定し、推定した。0.5 トン未満の排出量はすべて「<0.5」と表記した。

また、公共用水域へ排出される届出排出量について、排水の放流先が河川と届け出られている排出は 121 kg であった（経済産業省, 2004）。届出外の公共用水域への排出についてはすべて河川への排出と仮定すると、河川への排出量は 121 kg となる。

4.5 排出シナリオ
2002 年度の無水マレイン酸の製造段階での排出量は、大気へ 2 トンであり、公共用水域及び
土壌への排出はないと報告されている（日本化学工業協会, 2003）。この調査は、日本化学工業協会加盟企業のうち化学工業製品を製造・使用していると考えられる企業を対象として実施しており、環境への排出量・移動量が、製造段階と使用段階とに分けて把握されている。

無水マレイン酸の主たる排出経路は、2002年度PRTRデータ及び用途情報から判断して、化学工業における樹脂の合成過程での大気への排出と推定する。

5. 環境中運命
5.1 大気中での安定性
無水マレイン酸は、常温では固体であり、蒸気圧は極めて低い（0.007 Pa、20℃）ので（3章参照）、大気中においては、蒸気ではほとんど存在しない。また、その構造から容易に加水分解される（5.2.1参照）。大気中に粉じんとして排出された場合には、雨滴と接触すると速やかに加水分解されてマレイン酸になり、雨滴と共に降下すると推定される。

無水マレイン酸は、相対湿度96%の大気中では21時間後に完全に加水分解されるが、相対湿度50%の大気中では加水分解されないととの報告もある（Rosenfeld and Murphy, 1967）。

以下の記述では、マレイン酸についても参考までに言及する。

a. OHラジカルとの反応性
対流圏大気中では、無水マレイン酸とOHラジカルとの反応速度定数は1.45×10^{-12} cm³/分子/秒（25℃、測定値）であり（SRC:AopWin, 2004）、マレイン酸とOHラジカルとの反応速度定数は7.95×10^{-12} cm³/分子/秒（25℃、推定値）である（SRC:AopWin, 2004）。

OHラジカル濃度を5×10⁵〜1×10⁶分子/cm³とした時の半減期は、無水マレイン酸では6〜10日、マレイン酸では1〜2日と計算される。

b. オゾンとの反応性
対流圏大気中では、無水マレイン酸とオゾンとの反応速度定数は1.75×10^{-18} cm³/分子/秒（25℃、推定値）であり（SRC:AopWin, 2004）、マレイン酸とオゾンとの反応速度定数は8.75×10^{-19} cm³/分子/秒（25℃、推定値）である（SRC:AopWin, 2004）。

オゾン濃度を7×10¹¹分子/cm³とした時の半減期は、無水マレイン酸では7日、マレイン酸では10日と計算される。

c. 硝酸ラジカルとの反応性
調査した範囲内では、無水マレイン酸及びマレイン酸の硝酸ラジカルとの反応性に関する報告は得られていない。

d. 直接光分解性
調査した範囲内では、無水マレインの直接光分解性に関する報告は得られていないが、マレイン酸は波長が290 nm以上の紫外線を吸収するので、大気環境中で直接光分解される可能性がある（U.S.NLM:HSDB, 2004）。
5.2 水中での安定性

5.2.1 非生物的分解性

無水マレイン酸は、25℃でpH 7における加水分解半減期が22秒であり、水中では速やかに加水分解されてマレイン酸になる（Bunton et al., 1963）。

5.2.2 生分解性

無水マレイン酸は、化学物質審査規制法に基づく好気的生分解性試験では、被験物質濃度100 mg/L、活性汚泥濃度30 mg/L、試験期間2週間の条件において、生物化学的酸素消費量（BOD）測定での分解率は55%であるが、汚泥中の無機態窒素（TOC）測定での分解率は85%であること、吸光度測定での分解率が100%であることなどから、総合的に考えて良分解性と判定されている（通商産業省，1975）。河川水由来の微生物を用いた好気的生分解性試験では、無水マレイン酸濃度100 mg/L、試験温度30℃、試験期間3日間の条件において、無水マレイン酸の変化率は15%であった。なお、同一条件下で、海水由来の微生物を用いた場合には、無水マレイン酸の変化率は2%であった（近藤ら，1988）。無水マレイン酸では、水中では速やかに非生物的に加水分解されてマレイン酸になる（5.2.1参照）。マレイン酸については、汚泥由来の微生物を用いて20℃で行った好気的生分解性試験では、被験物質濃度10 mg/L、汚泥濃度10 mg/Lの条件において、BOD測定での分解率は、試験期間5日間及び20日間ではそれぞれ77%及び92%であった（Young et al., 1968）。また、Warburg式レスピロメーター（溶存酸素計）を用いた好気的生分解性試験では、汚泥由来の微生物を用い、20℃、試験期間5日間の条件において、BOD測定によるマレイン酸の分解率は46%であったとの報告もある（Heukelekian and Rand, 1955）。

以上のことから、無水マレイン酸は、まず加水分解されてマレイン酸になり、次に好気的条件下では生分解されると推定される。

調査した範囲内では、無水マレイン酸及びマレイン酸の嫌気的生分解性に関する報告は得られていない。

5.2.3 下水処理による除去

調査した範囲内では、無水マレイン酸及びマレイン酸の下水処理による除去に関する報告は得られていない。

5.3 環境水中での動態

無水マレイン酸は、河川水等の環境水中に排出された場合、速やかに加水分解されてマレイン酸になる（5.2.1参照）。

マレイン酸は、蒸気圧が0.048 Pa（25℃）、水に対する溶解度が780 g/L（25℃）であり、ヘンリ一定数が1.37×10⁻² Pa·m³/mol（25℃）であること（3章参照）、水中から大気中への揮散性は極めて低いと推定される。マレイン酸の環境吸着係数（Koc）の値は6（3章参照）であるので、非解離状態のマレイン酸は水中の懸濁物質及び底質に吸着され難いと推定される。しかし、一般環境水中では、マレイン酸のカルボキシル基は、その解離定数（pKₐ=1.910、pK₂=6.33）（3章参照）から、ほとんどの解離した状態で存在しており、腐植物質のアミノ基やイミノ基などと強く結合し、腐植物質などの懸濁物質及び底質に吸着される可能性がある。
以上のこと及び5.2の結果より、環境水中に無水マレイン酸が排出された場合は、まず加水分解によりマレイン酸となり、次に好気的条件下では生分解により除去されると推定される。

5.4 生物濃縮性

調査した範囲内では、無水マレイン酸の生物濃縮係数（BCF）の測定値に関する報告は得られていない。しかし、無水マレイン酸は水中では速やかに加水分解されてマレイン酸になる（5.2.1参照）ので、マレイン酸のデータを用いて無水マレイン酸のBCFを推定する。

マレイン酸のBCFの測定値は、コイ科の魚を用いた3日間の濃縮性試験では10未満、クロレラ（藻類）を用いた24時間の濃縮性試験では11であったとの報告がある（Freitag et al., 1982）。

また、マレイン酸のBCFはオクタノール/水分配係数（log Kow）の値-0.48（3章参照）から3.2と計算されている（SRC: BcfWin, 2004）。

以上のことから、無水マレイン酸及びマレイン酸の水生生物への濃縮性は低いと推測される。

6. 環境中の生物への影響

6.1 水生生物に対する影響

無水マレイン酸は水中で容易に加水分解されてマレイン酸になる。加水分解半減期は約22秒と推定されており（5.2.1参照）、実際には無水マレイン酸を使用した毒性試験であっても、マレイン酸の毒性を示しているものと考えられる。

6.1.1 微生物に対する毒性

無水マレイン酸の微生物に対する毒性試験結果を表6-1に示す。

細菌への影響について報告されており、毒性の最小値は、海洋性発光細菌（Photobacterium属）の発光阻害を指標とした15分間EC50の12.5mg/Lであった（Bulich et al., 1990）。

<table>
<thead>
<tr>
<th>生物種</th>
<th>温度（℃）</th>
<th>エンドポイント</th>
<th>濃度（mg/L）</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas putida（ジェードモナス）</td>
<td>ND</td>
<td>18時間EC10</td>
<td>増殖阻害</td>
<td>63（n） Bringmann & Kuhn, 1979; Knie et al., 1983</td>
</tr>
<tr>
<td>Photobacterium phosphoreum（海洋性発光細菌）</td>
<td>15</td>
<td>15分間EC50</td>
<td>発光阻害</td>
<td>12.5（n） Bulich et al., 1990</td>
</tr>
</tbody>
</table>

ND: データなし、(n): 設定濃度
1) 無水マレイン酸が水中で加水分解した後のマレイン酸の毒性を示していると考えられる

6.1.2 藻類に対する毒性

無水マレイン酸の藻類に対する毒性試験結果を表6-2に示す。

淡水緑藻のセネデスムス、ヘマトコッカス、クロレラを用いた試験報告がある。セネデスムスの生長阻害試験で生長速度によって算出された72時間EC50が29mg/Lであった（Huels,
1988a）。なお、本報告は未公開の企業データであるため、原著が入手不可能であり、信頼性を確認できない。ヘマトコッカスに対する酸素生成阻害を指標とした4時間EC50は、190mg/Lであったが、同時に実施した無水マレイン酸の加水分解物であるマレイン酸で得られた値は125mg/Lであった（Knie et al., 1983）。クロレラの光合成阻害を指標とした5分間の影響阻害は3.92mg/Lであったという報告もある（Christoffers and Ernst, 1983）。

海水種での試験報告は得られていない。

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenedesmus subspicatus<sup>2</sup>（緑藻、セネデスマス）</td>
<td>UBA<sup>3</sup>止水</td>
<td>ND</td>
<td>72時間EC10 72時間EC50</td>
<td>生長阻害 生長速度</td>
<td>23 29 (n)</td>
</tr>
<tr>
<td>Hematomatococcus pluvialis（緑藻、ヘマトコッカス）</td>
<td>止水</td>
<td>ND</td>
<td>4時間EC50</td>
<td>酸素生成阻害</td>
<td>190 (n)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>125 (n)マレイン酸</td>
</tr>
<tr>
<td>Chlorella fusca（緑藻、クロレラ）</td>
<td>止水</td>
<td>30</td>
<td>5分間</td>
<td>光合成阻害</td>
<td>3.92 (n)</td>
</tr>
</tbody>
</table>

ND: データなし、(n): 設定濃度
1) 無水マレイン酸が水中で加水分解した後のマレイン酸の毒性を示していると考えられる、
2) 現学名: *Desmodesmus subspicatus*、3) ドイツ環境庁 (Umweltbundesamt) テストガイドライン

6.1.3 無脊椎動物に対する毒性

無水マレイン酸の無脊椎動物に対する毒性試験結果を表6-3に示す。

無脊椎動物に対する急性毒性については、甲殻類であるオオミジンコを用いた報告がある。
試験液のpHを無調整と中性付近に調整した試験での24時間EC50（遊泳阻害）は、それぞれ88mg/L及び5,600mg/Lであったという報告（Bringmann and Kuhn, 1982）があり、その差は60倍以上であった。また、別の試験で24時間EC50（遊泳阻害）が84mg/Lという報告もあり、同時に実施した無水マレイン酸の加水分解物であるマレイン酸で得られた値は80mg/Lとほぼ同じであった（Trenel and Kuhn, 1982）。海産種に対する急性毒性についての試験報告は得られていない。

長期毒性としては、オオミジンコを用いた繁殖試験の報告で、繁殖を指標とした21日間NOECが10mg/Lであった（Huels, 1988b）。なお、本報告は未公開の企業データであるため、原著が入手不可能であり、信頼性を確認できない。
表6-3 無水マレイン酸の無脊椎動物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>硬度(mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント 濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daphnia magna (甲殻類、オミツシジミ)</td>
<td>生後24時間以内</td>
<td>DINF3 38412-1止水</td>
<td>20</td>
<td>ND</td>
<td>pH無調整</td>
<td>24時間 EC₀ 24時間 EC₅₀ 24時間 EC₁₀₀ 游泳阻止</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. EPA</td>
<td>止水</td>
<td>19</td>
<td>255</td>
<td>2.4-7.9</td>
<td>48時間 LC₅₀</td>
<td>330 (n)</td>
<td>Monsanto, 1982a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBA5</td>
<td>半止水</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>21日間 EC₅₀ 21日間 NOEC 繁殖</td>
<td>77</td>
<td>10 (n)</td>
</tr>
</tbody>
</table>

ND:データなし、(n):設定濃度
1)無水マレイン酸が水中で加水分解した後のマレイン酸の毒性を示していると考えられる、2)ドイツ規格協会(Deutsches Institut fur Normung)テストガイドライン、3)ドイツ環境庁(Umweltbundesamt)テストガイドライン

6.1.4 魚類に対する毒性

無水マレイン酸の魚類に対する毒性試験結果を表6-4に示す。

淡水魚としては、ブルーギル、ニジマス、カダヤシ、ゴールデンオルフェに対する急性毒性の報告がある。48〜96時間 LC₅₀の範囲は、75〜275 mg/Lであった(Huels, 1982; Knie et al., 1983; Monsanto, 1982b; Monsanto, 1982c; Turnbull et al., 1954; Wallen et al., 1957)。このうちゴールデンオルフェに対しては、無水マレイン酸とマレイン酸の両物質に対して試験が行われている。48時間 LC₅₀は前者に対しては115 mg/L、後者に対しては106 mg/Lであり、両者の値はほぼ同じであった(Knie et al., 1983)。

海水魚の急性毒性及び魚類の長期毒性についての試験報告は得られていない。

表6-4 無水マレイン酸の魚類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>硬度(mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント 濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lepomis macrochirus(レイジー)</td>
<td>17 mm 0.11 g U.S. EPA止水</td>
<td>21-22</td>
<td>40-45</td>
<td>3.3-6.9</td>
<td>96時間 LC₅₀</td>
<td>75 (n)</td>
<td>Monsanto, 1982b</td>
</tr>
<tr>
<td></td>
<td>5 g 7 cm</td>
<td>止水通気</td>
<td>20</td>
<td>84-163</td>
<td>6.9-7.5</td>
<td>24時間 LC₅₀ 48時間 LC₅₀</td>
<td>150 138 (n)</td>
</tr>
<tr>
<td>生物種</td>
<td>大きさ/成長段階</td>
<td>試験法/方式</td>
<td>温度 (℃)</td>
<td>硬度 (mg CaCO₃/L)</td>
<td>pH</td>
<td>エンドポイント</td>
<td>濃度 (mg/L)</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------------</td>
<td>----</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Oncorhynchus mykiss (ニジマス)</td>
<td>41 mm 1.1 g</td>
<td>U.S. EPA 止水</td>
<td>12</td>
<td>40-45</td>
<td>3.3-6.8</td>
<td>96 時間 LC₅₀</td>
<td>75 (n)</td>
</tr>
<tr>
<td></td>
<td>2 年齢</td>
<td>半止水閉鎖系</td>
<td>16-21.5</td>
<td>ND</td>
<td>6.1-7.8</td>
<td>48 時間 LC₈₅₀</td>
<td>165 260</td>
</tr>
<tr>
<td>Gambusia affinis (キダヤシ)</td>
<td>メス成魚</td>
<td>止水</td>
<td>20-23</td>
<td>ND</td>
<td>5.8-8.0</td>
<td>24 時間 LC₅₀</td>
<td>240 230</td>
</tr>
<tr>
<td>Leuciscus idus (ゴールデンオルフ、コイ科)</td>
<td>ND 3)</td>
<td>DIN 38412-15 止水</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>48 時間 LC₅₀</td>
<td>115 (n)</td>
</tr>
<tr>
<td></td>
<td>ND</td>
<td>DIN 38412-15 止水</td>
<td>10</td>
<td>ND</td>
<td>3.1-5.5</td>
<td>48 時間 LC₅₀</td>
<td>275 (n)</td>
</tr>
</tbody>
</table>

ND: データなし、(n): 設定濃度、閉鎖系: 試験容器や水槽にフタ等をしているが、ヘッドスペースはある状態
1）無水マレイン酸が水中で加水分解した後のマレイン酸の毒性を示していると考えられる、2）ドイツ規格協会 (Deutsches Institut fur Normung) テストガイドライン

6.1.5 その他の水生生物に対する毒性

調査した範囲内では、無水マレイン酸のその他の水生生物 (両生類等) に関する試験報告は得られていない。

6.2 陸生生物に対する影響

6.2.1 微生物に対する毒性

調査した範囲内では、無水マレイン酸の微生物に関する試験報告は得られていない。

6.2.2 植物に対する毒性

調査した範囲内では、無水マレイン酸の植物に関する試験報告は得られていない。また、加水分解物であるマレイン酸のレタスの発芽を指標とした 72 時間 EC₅₀ は 12.8 mg/L であった (Reynolds, 1975)。

6.2.3 動物に対する毒性

調査した範囲内では、無水マレイン酸の動物に関する試験報告は得られていない。

6.3 環境中の生物への影響（まとめ）

無水マレイン酸の環境中の生物に対する毒性影響については、淡水生物を用いて致死、遊泳阻害、生長阻害、繁殖などを指標に検討が行われている。調査した範囲内では、無水マレイン酸の海産生物や陸生生物に関する試験報告は得られていない。
無水ルチン酸は水中で容易に加水分解し、ルチン酸となる（5.2.1参照）が、両物質のデータが同時に得られた藻類、甲殻類及び魚類に対する毒性値がほぼ同じであることから、無水ルチン酸への影響はその加水分解物であるルチン酸の影響と考えられる。

微生物については、海洋性発光細菌（Photobacterium属）の発光阻害を指標とした15分間EC50が12.5 mg/Lであった。

藻類については、セネデスムス、ヘマトコッカス及びクラレラのデータが得られたが、信頼性を確認できない、あるいは公定法と大きく異なる試験方法のため有害性の評価はできなかった。

無脊椎動物に対する急性毒性は、オオミジンコに対する24時間EC50（遊泳阻害）は84 mg/Lであった。また、試験液のpHを無調整と中性付近に調整した試験での24時間EC50（遊泳阻害）は、それぞれ88 mg/L及び5,600 mg/Lであったという報告もある。

魚類の急性毒性については、ブルーギル及びニジマスに対する96時間LC50が75 mg/Lであった。調整した範囲内では、無水ルチン酸の海水魚及び魚類長期毒性に関する試験報告は得られていない。

以上から、無水ルチン酸の水生生物に対する影響はその加水分解物であるルチン酸の影響と考えられる。水生生物の急性毒性は、魚類であるブルーギル及びニジマスに対する96時間LC50の75 mg/Lが最小値である。信頼性を確認できる長期毒性についてのNOEC等は、得られていない。

得られた毒性データのうち水生生物に対する最小値は、魚類であるブルーギル及びニジマスに対する96時間LC50の75 mg/Lである。

7. ヒト健康への影響

7.1 生体内運命

無水ルチン酸の代謝はほとんど知られていないが（DFG, 1992）、生体に取り込まれて容易にルチン酸に加水分解され、排泄されると予想される（日本産業衛生学会, 2000）。

放射能でラベルされたルチン酸は、in vitroでモルモットの肺でもウサギの腎臓（Taggart et al., 1962）と同じ代謝経路でD(+)リンゴ酸に代謝され、オキザロ酢酸を経て二酸化炭素に代謝された（Chakravarty and Sorensen, 1973）。

無水ルチン酸60 mg/kg/日を雌雄のイヌ各4頭に90日間混餌投与し、投与3、12、29、90日目の血漿中の濃度をガスクロマトグラフィー/質量分析法で測定した実験で、1コンパートメントモデルで吸収速度定数 Ksは3.49×10^{-3}/日、排出速度定数 Keは8.32×10^{-2}/日が得られ、投与55日目までに99%の定常状態に達し、血中濃度は最終日まで維持された（Dow Chemical, 1975a）。

7.2 疫学調査及び事例

ヒトでの無水ルチン酸の臭気の感知下限は、0.32 ppm (1.3 mg/m³) である（Amoore and Hautala, 1983）。
無水マレイン酸は1.5～2 ppm (6.1～8.2 mg/m³) の空気中濃度で1分以内に鼻に、15～20分で眼に刺激を感じ、2.5 ppm (10.2 mg/m³) 以上で耐えがたいほどの刺激性があると報告されている（ACGIH, 2001; 日本産業衛生学会, 2000)。

無水マレイン酸を原料の一部に使用する印刷工場で、作業者265人中189人（73%）に軽い眼痛、流涙、眼のかすみ等がみられ、そのうちの17人には慢性表層角膜炎様の変化がみられた。田中（1956）は、その印刷現場での無水マレイン酸濃度を推定し、明らかな特有な臭気とわずかな眼及び鼻咽頭の軽い刺激から、4.4 mg/m³以上としている（田中, 1956）。

ビスフェノールA型液状エポキシ樹脂と無水マレイン酸（硬化剤として）を用いる作業で、蒸気を吸入あるいは皮膚に接触したため感作性皮膚炎が生じた例が報告されているが、パッチテストで液状エポキシ樹脂にのみ陽性結果が得られており、無水マレイン酸には陰性であった（落合ら, 1978）。

イタリアの陶器製造工場の作業員の手にしばしばみられた皮膚炎について、皮膚炎と接触皮膚炎及び感作性物質を探索する調査が行われた。エタノールに溶解した1%無水マレイン酸をエナメル工126人と装飾工64人の背中に2日間適用し、除去1日後に皮膚を観察するパッチテストを実施した。その結果、感作性陽性は2人であった（Motolese et al., 1993）。

マレイン酸、フマル酸、フタル酸及びそれらの無水物等を用いる不飽和ポリエステル樹脂の生産作業に従事した32歳の男性についての症例報告がある。この症例では、既往データ、プリックテスト、RASTテスト、誘発テスト結果に基づいて、マレイン酸による職業性アレルギ性IgE媒介性鼻結膜炎及び接触じん麻疹であると報告された（Kanerva and Alanko, 2000）。

アルキドポリエステル樹脂製造工場で粉末の無水マレイン酸に暴露された34歳男性で、この職場に異動1か月後に咳、鼻炎、息苦しさ、喘鳴がみられ、その症状は粉末暴露数分以内に生じた。暴露時の無水マレイン酸の粉末濃度は0.83 mg/m³であったが、粉末無水フタル酸1.36 mg/m³も同時に暴露されていた。0.83 mg/m³の無水マレイン酸で14分間暴露の感作性気管支誘発試験を行ったところ、暴露開始2分後、咳、鼻炎、流涙がみられ、8分後にはラッセル音が両肺で生じ、最大呼気流速は徐々に低下して20分後には対照の55%になった。無水フタル酸の誘発試験では、喘息発作は起こらなかった（Lee et al., 1991）。

無水マレイン酸を取扱う男性作業者（倉庫管理者48歳、パッチ検査者21歳）にヒスタミン誘発試験を行い、二相性の喘息発作（努力性肺活量で測定）を起こした報告があるが、暴露濃度は不明であった（Durham et al., 1987）。

無水マレイン酸暴露（暴露濃度は不明）によると推定される溶血性貧血と職業喘息を起こした57歳男性の症例があり、特異IgE抗体産生は無水マレイン酸で陽性、クームス試験でも陽性であった（Gannon et al., 1992）。ただし、その結果については異論もあり、喘息は職業的な喘息ではなく、更に、無水マレイン酸暴露が溶血性貧血と関連するという十分な証拠はないとしている（Jackson and Jones, 1993）。

7.3 実験動物に対する毒性

7.3.1 急性毒性

無水マレイン酸の実験動物に対する急性毒性試験結果を表7-1に示す。

無水マレイン酸の経口投与による急性毒性のLD₅₀値は、マウス、ラット、ウサギ、モルモット
トでそれぞれ 465、235〜1,050、390 mg/kg であり、経皮投与による LD₅₀ 値はウサギで 398 〜2,620 mg/kg、モルモットで 20 mg/kg 超、腹腔内投与ではラットで 97 mg/kg であった (ACGIH, 2001; Dow Chemical, 1975d; Randall and Healy, 1990; RTECS, 2002; 日本産業衛生学会, 2000)。

無水マレイン酸を SD ラットに単回経口投与した試験で、食欲減退、自発運動低下、脱力、衰弱及び死亡、剖検で肺及び肝臓に出血、胃腸管の急性炎症が観察された。NZW ウサギに単回経皮投与した試験で、食欲減退、自発運動低下、脱力、衰弱及び死亡、剖検で胆のう膨大、脾臓の褪色、胃腸管の炎症、肺・肝臓の充血 (水溶媒の場合)、肺の出血、肝臓の褪色 (油溶媒の場合) が観察された (Randall and Healy, 1990)。

| 表 7-1 無水マレイン酸の急性毒性試験結果 |
|-----------------|-------|-------|-------|-------|
| | マウス | ラット | ウサギ | モルモット |
| 経口 LD₅₀ (mg/kg) | 465 (2,400) | 400 | 1,050 (コーン油) | 409 (雄、コーン油) | 875 | 390 |
| 吸入 LC₅₀ (mg/m³/1時間) | ND | ND (＞720) | ND | ND |
| 経皮 LD₅₀ (mg/kg) | ND | ND (＞398 (水)) | ND | ND |
| 腹腔内 LD₅₀ (mg/kg) | ND | 97 | ND | ND |

ND: データなし
括弧内の数字はマレイン酸での値である (RTECS, 1997)

一方、マレイン酸は、実験動物においてヒトのファンコニー症候群 Fanconi syndrome（注）に類似した変化を引き起こすことが知られている (Castano et al., 1997)。

注) ファンコニー症候群: 尿細管障害症候群、尿細管の細胞障害微細変化が特徴で、特に尿細管の細胞障害が著明で、尿中異物の排泄障害が見られる。

マレイン酸の雄 SD ラットへの静脈内投与で、マレイン酸は腎臓の遠位ネフロン部と近位尿細管を障害して再吸収を抑制した (Brewer et al., 1983)。

マレイン酸ナトリウムを雌雄の Wistar ラットに腹腔内投与した実験では、腎臓近位尿細管、特に内腔側に存在する刷子細胞 (brush border membrane) の構造的障害及び γ-グルタミルトランスフェラーゼの活性低下を示し、尿細管の細胞障害が見られた。また、マレイン酸塩の雄ラットへの腹腔内投与は急性腎不全を誘発し、マレイン酸塩は遊離 SH 基と反応して尿細管細胞内のグルタチオンの消耗を引き起こした (Gstraunthaler et al., 1983)。

また、マレイン酸塩の雄ラットへの腹腔内投与は急性腎不全を誘発し、マレイン酸塩は遊離 SH 基と反応して尿細管細胞内のグルタチオンの消耗を引き起こした (Gstraunthaler et al., 1983)。

マレイン酸 100、200 mg/kg の Wistar 雄ラットへの単回腹腔内投与で、100 mg/kg 投与 3 時間後から軽度の近位尿細管曲部の刷子細胞あるいは上皮の脱落・壊死、200 mg/kg 投与 3 時間後
に刷子縁膜下に明調な染色帯を示す明調帯の増加が、6〜24 時間後に上皮の脱落・壊死、刷子縁膜の欠損、円柱状が観察され、電子顕微鏡で刷子縁膜下に大小多数の細胞内空胞とミトコンドリアの腫大・濃染が認められた。同時に投与初期の組織学的变化に一致して腎臓内グルタチオン濃度が顕著に減少した。また、血中尿素窒素・クレアチニンの増加、尿中タンパク・グルコース・LDH 活性等の増加がみられ、近位尿細管の障害が示唆された (山田, 1995)。

マレイン酸 50 mg/kg のラットへの単回静脈内投与で、投与後直ちに重炭酸尿、ナトリウム利尿、カリウム利尿が認められた (Eiam-ong et al., 1995)。

マレイン酸ニトリウム塩を雄の SD ラットに 1 日 1 回、2 日間腹腔内投与し、アミノ酸・有機酸・グロコース・電解質の尿中排泄増加、血漿クレアチニン・尿素窒素の増加、及びクレアチニンクリアランス値の低下をきたし、ファンコニー症候群様変化を引き起こした。組織学的にも、尿細管壊死が観察された (Nissim and Weinberg, 1996)。

7.3.2 刺激性及び腐食性
粉末無水マレイン酸 0.5 g を水で湿して NZW ウサギの皮膚に 24 時間、半閉塞貼付したところ、腐食性がみられた (Randall and Healy, 1990)。
無水マレイン酸のウサギの眼への適用で、1%液 (おそらく水溶液) で重度の刺激性がみられた (Carpenter and Smyth, 1946)。粉末無水マレイン酸 45 mg の NZW ウサギの眼の結膜のうへの適用で、腐食性がみられた (Randall and Healy, 1990)。無水マレイン酸をモルモットに 1 時間蒸気暴露し、眼にびまん性の表層角膜炎様変化を観察した。その 1 時間 EC50 は 71.9 mg/m3 であった (田中, 1956)。
一方、マレイン酸としての報告があり、マレイン酸はウサギに対して皮膚に軽度刺激性、眼に重度の刺激性を示す。

7.3.3 感作性
無水マレイン酸のモルモットを用いての皮膚感作性試験で、IC50 値 (50%感作濃度、計算値) はマキシマイゼーション法では 1 ppm、アジュバント・パッチ法では 1,000 ppm、ピューラー法では 300,000 ppm であった (Nakamura et al., 1999)。
無水マレイン酸の局所リンパ節増殖試験 LLNA では、BALB/c マウスの耳介背に無水マレイン酸 0.1〜2.5% (w/v) を 3 日間連続塗布し、耳介リンパ節での強いリンパ球増殖反応が誘導された。同時にリンパ節が産生するサイトカインプロフィールを解析すると、ヘルパー T リンパ球 2 型 (Th2) のサイトカインが優位に産生されていた。無水マレイン酸の職業暴露によって、おそらく IgE 媒介の Th2 リンパ球が関与して喘息と気道アレルギーが引き起こされると報告している (Dearman et al., 2000)。
一方、マレイン酸についての報告があり、マレイン酸はモルモットの肺からのアナフィラキシー誘導ヒスタミンの放出を促進した (Chakravarty and Sorensen, 1973)。

7.3.4 反復投与毒性
無水マレイン酸の実験動物に対する反復投与毒性試験結果を表 7-2 に示す。
a. 経口投与

雌雄のSDラット（F₀及F₁）に無水マレイン酸 0、20、55、150 mg/kg/日（溶媒：コーン油）を
交配前80日間以上にわたり強制経口投与し、無水マレイン酸の二世代への生殖影響が調べられ
た。F₀では、呼吸音の異常（ラッセル音）がみられた例があったが、他の症状や行動に対照群
との差異は認めなかった。F₁では、ラッセル音は用量の増加に伴ってその頻度と程度を増した。
F₀の150 mg/kg/日群の雌雄で体重増加抑制及び死亡率の増加が認められ、腎皮質壊死が雄の60％、
雌の15％にみられた。F₁の20、55 mg/kg/日群の雌で腎臓の絶対重量増加（それぞれ108、111％）が
観察されたが、相対重量には对照群との差はなく、組織学的変化も認めなかった。150 mg/kg/
日群の雄で体重増加抑制、死亡率の増加が認められ、雌では全例死亡（44週で試験終了）した
(Monsanto, 1982g; Short et al., 1986)。本評価書では、成熟動物の体重増加抑制及び腎皮質壊死を
指標として、無水マレイン酸のNOAELは55 mg/kg/日であると判断した。

b. 吸入暴露

雌雄のSDラットに無水マレイン酸 0、20、40、60 mg/kg/日を90日間混餌投与した試験で、
20、40 mg/kg/日群では雌雄共に投与の影響は認められなかった。雄の100 mg/kg/日
群で腎臓に肉眼的・病理組織学的変化（腫大、褐色、尿細管の結晶形の増生、腎板管上
皮細胞の再生）の一部が認められ、100 mg/kg/日以上の雄群で、その変化は頻度と程度にお
いて用量依存的であった。雌では250 mg/kg/日以上の群で腎臓に病理組織学的変化を認め、600
mg/kg/日群では用量的にも認められた。腎臓の重量では、雄の250 mg/kg/日以上の群、雌では600
mg/kg/日群で絶対・相対重量の増加がみられた。600 mg/kg/日群で、雌雄に軽微なタンパク尿、
野生に肝臓相対重量増加が認められた。腎臓の重量では、雄の250 mg/kg/日以上の群、雌では
600 mg/kg/日群では絶対・相対重量の増加が認められた。600 mg/kg/日群で、雌雄に軽微なタンパク尿、
野生に肝臓相対重量増加が認められた。(Dow Chemical, 1975b)。本評価書では腎臓の肉眼的・病理
組織学的変化を指標として、この試験のNOAELは40 mg/kg/日と判断する。

雄のSDラットに無水マレイン酸 0、250、600 mg/kg/日を183日間混餌投与した試験で、250
mg/kg/日群で、腎臓及び肝臓の絶対・相対重量の増加、腎尿細管と尿球体に用量依存的に病
理組織学的変化を認め、腎尿細管の変性、腫大、再生の程度は用量依存的であった。また、
細胞質の空胞化を伴う肝細胞腫大が観察されたが、ほとんどどの動物では、肝細胞の変性・壊死
は明らかでなかった (Dow Chemical, 1977)。

雌雄のF₃44ラットに無水マレイン酸 0、10、32、100 mg/kg/日を2年間混餌投与した慢性毒性
発がん性試験で、32 mg/kg/日以上の群の雄で用量依存性の体重減少（6％未満）が一定期間認め
られ、減少程度は小さいが雌においても認められた。体重減少は用量依存性で有意差はなかった。32 mg/kg/
日以上の群では摂取量も一定期間減少した。体重減少は摂取量の減少による可能性があると著
者らは述べている。この他、神経学的検査、眼科的検査、血液学的・血液生化学検査、尿検
査、病理組織学的検査で毒性影響は認められなかった (CIIT, 1983)。この試験のNOAELは求め
られなかった。

雌雄のイス（ビーグル）に無水マレイン酸 0、20、40、60 mg/kg/日を90日間混餌投与した試
験で、60 mg/kg/日群の雄で統計学的に有意な血球容積の減少、ヘモグロビン濃度の減少傾向が
認められたほかは毒性影響はみられなかった。明確に毒性影響のない用量は、雄で40 mg/kg/
日、雌で60 mg/kg/日と報告されている (Dow Chemical, 1975c)。

b. 吸入暴露

雌雄のSDラットに無水マレイン酸を昇華させて発生させた蒸気 0、20、32、86 mg/m³を 6
時間/日、5日/週、4週間暴露した試験で、すべての暴露群に鼻部と眼への刺激性、鼻汁と凝固血液で覆われた眼、呼吸器系に組織学的な変化（気管・鼻甲介に扁平上皮化生・炎症細胞浸潤、限局性肺胞内出血・泡状マクロファージ出現など）が観察され、NOAEL は求められなかった（Monsanto, 1982d）。

雌雄のSDラットに無水マレイン酸を昇華させて発生させた蒸気0, 1.1, 3.3, 9.8 mg/m³（無水マレイン酸とマレイン酸の合計値）を6時間/日、5日/週、6か月間暴露した試験で、鼻部と眼への刺激性がすべての暴露群にみられ、その程度は濃度に依存した。9.8 mg/m³群では、鼻汁、著しいあえぎ呼吸がみられた。鼻部での炎症が観察され、全暴露群で鼻腔粘膜上皮過形成と粘膜上皮化生が観察された。これらの変化は可逆的であると著者らは述べている。その他、死亡率、眼科的検査、血液学的・血液生化学的検査、尿検査に異常はみられなかった（Monsanto, 1982e; Short et al., 1988）。本評価書では、鼻部での可逆的な組織学的変化を指標にした場合、LOAEL を1.1 mg/m³（全マレイン酸として）と判断した。

雌雄のEngleハムスターに無水マレイン酸を昇華させて発生させた蒸気0, 1.1, 3.3, 9.8 mg/m³（無水マレイン酸とマレイン酸の合計値）を6時間/日、5日/週、6か月間暴露した試験で、鼻部と眼への刺激性がすべての暴露群にみられ、その程度は、濃度に依存した。9.8 mg/m³群では、鼻汁、著しいあえぎ呼吸がみられた。鼻部での炎症が観察され、3.3, 9.8 mg/m³群では鼻腔粘膜上皮過形成と全暴露群で粘膜上皮化生が観察されたが、可逆性であると推察された。その他、死亡率、眼科的検査、血液学的・血液生化学的検査、尿検査に異常はみられなかった（Monsanto, 1982e; Short et al., 1988）。本評価書では、鼻部での可逆的な組織学的変化を指標にした場合、LOAEL は1.1 mg/m³（全マレイン酸として）と判断した。

雌雄のアカゲザルに無水マレイン酸を昇華させて発生させた蒸気0, 1.1, 3.3, 9.8 mg/m³（無水マレイン酸とマレイン酸の合計値）を6時間/日、5日/週、6か月間暴露した試験で、鼻部と眼への刺激性がすべての暴露群にみられ、その程度は、濃度に依存した。9.8 mg/m³群では、鼻汁、眼刺激、咳とくしゃみを伴う軽度のあえぎ呼吸がみられた。全暴露群で鼻部でのごく軽度の炎症が観察された。その他、死亡率、眼科的検査、血液学的・血液生化学的検査、尿検査、肺機能検査に異常はみられなかった（Monsanto, 1982e; Short et al., 1988）。

以上のラット、ハムスター、サルの結果から、本評価書では、鼻部と眼への可逆的な影響を指標にした場合、LOAEL は1.1 mg/m³（無水マレイン酸とマレイン酸の合計値）と判断した。

以上の無水マレイン酸の反復投与による影響として、経口投与では腎尿細管壊死等がみられ、吸入暴露では鼻と眼への刺激、及び鼻と眼の病理組織学的変化が認められた。

経口投与では、雌雄のSDラットに無水マレイン酸0, 20, 40, 100, 250, 600 mg/kg/日を90日間混餌投与した試験で、100 mg/kg/日以上の雄において、腎臓に用量依存的に肉眼的・病理組織学的変化がみられた（Dow Chemical, 1975b）ことから、これを指標として、この試験のNOAEL は40 mg/kg/日である。

吸入暴露では、無水マレイン酸による鼻と眼への刺激性、鼻部炎症、鼻腔粘膜上皮の過形成と粘膜上皮化生が主な影響であったが、可逆性変化であった。ラット、ハムスター、サルでの6か月間吸入暴露試験で（Short et al., 1988）、鼻と眼への可逆的な影響を指標にした場合、LOAEL はともに1.1 mg/m³（無水マレイン酸とマレイン酸の合計値）である。
表 7-2 無水マレイン酸の反復投与毒性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット SD</td>
<td>強制経口</td>
<td>交配前80日間以上</td>
<td>0, 20, 55, 150mg/kg/日 (溶媒:コーン油)</td>
<td>F₀: ラットで呼吸音の異常 (ラッセル音) 150mg/kg/日群: 雌雄: 体重増加抑制、死亡率増加 (投与自体による死亡も含む雄70%, 雌65%) 雌(60%):腎皮質増死 雄(15%):腎皮質死亡</td>
<td>Monsanto, 1982g; Short et al., 1986</td>
</tr>
<tr>
<td>雄10匹/群</td>
<td>雌20匹/群</td>
<td>F₁: 22日齢で投与開始</td>
<td>20、55、150mg/kg/日群: 雌:腎臓絶対重量増加(20、55mg/kg/日群それぞれ108、111%) 腎臓に組織学的変化なし</td>
<td>F₁: 腎:ラッセル音は用量増加に伴って頻度・程度増加</td>
<td></td>
</tr>
<tr>
<td>二世代生殖試験 (生殖・発生育毒性の項参照)</td>
<td></td>
<td></td>
<td>150mg/kg/日群: 雄:体重増加抑制、死亡率増加 (投与自体による死亡も含む75%) 雌:全匹死亡 (44週で試験終了)</td>
<td>NOAEL: 55mg/kg/日 (体重増加抑制・腎皮質死亡等)</td>
<td></td>
</tr>
<tr>
<td>ラット SD</td>
<td>混餌</td>
<td>90日間</td>
<td>0, 20, 40, 100, 250, 600mg/kg/日</td>
<td>20mg/kg/日: 影響なし 40mg/kg/日: 影響なし 100mg/kg/日以上: 雄:腎臓肉眼的**・病理組織学的変化** (用量依存的)</td>
<td>Dow Chemical, 1975b</td>
</tr>
<tr>
<td>雌雄</td>
<td></td>
<td></td>
<td>250 mg/kg/日以上: 雄:腎臓絶対・相対重量増加 雌:腎臓肉眼的・病理組織学的変化</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8週齢15匹/群</td>
<td></td>
<td></td>
<td>600mg/kg/日: 雄:軽微なタンパク尿 雌:肝臓相対重量増加 雌:腎臓絶対・相対重量増加 *腎臓肉眼的変化:腫大、褪色 **腎臓病理組織学的変化:尿細管のびまん性拡張・腫大・変性、尿細管上皮細胞の再生</td>
<td>NOAEL: 40mg/kg/日 (腎臓変化)</td>
<td></td>
</tr>
<tr>
<td>ラット SD</td>
<td>混餌</td>
<td>183日間</td>
<td>0, 250, 600mg/kg/日</td>
<td>250mg/kg/日: 尿中アルカリホスファターゼ値低下肝臓・腎臓絶対・相対重量増加 600mg/kg/日: 尿比重増加 脳・心臓相対重量増加肝臓・腎臓絶対・相対重量増加</td>
<td>Dow Chemical, 1977</td>
</tr>
<tr>
<td>雄</td>
<td></td>
<td></td>
<td>この他、腎臓:腎尿細管・糸球体に用量依存的に腎機能・病理組織学的変化 腎尿細管の変性、腫大、再生の程度は用量依存的</td>
<td></td>
<td></td>
</tr>
<tr>
<td>対照群75匹/群</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>試験群50匹/群</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動物種等</td>
<td>投与方法</td>
<td>投与期間</td>
<td>投与量</td>
<td>結 果</td>
<td>文献</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>ラット F344 雌雄 30匹/群</td>
<td>混餌</td>
<td>2年間</td>
<td>0、10、32、100 mg/kg/日</td>
<td>神経学的検査、眼科的検査、血液学的・血液生化学的検査、病理組織学的検査で毒性学的影響なし</td>
<td>CIIT, 1983</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>32 mg/kg/日以上: 雌雄でわずかに体重減少 (6%未満) (一過性) 摂餌量軽度減少</td>
<td></td>
</tr>
<tr>
<td>イヌ ビーグル 雌雄 13-14か月齢 4頭/群</td>
<td>混餌</td>
<td>90日間</td>
<td>0、20、40、60 mg/kg/日</td>
<td>神経学的検査、眼科的検査、血液学的・血液生化学的検査、尿検査、病理組織学的検査で毒性学的影響なし</td>
<td>Dow Chemical, 1975c</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOAEL: 40 mg/kg/日 (雄) 60 mg/kg/日 (雌)</td>
<td></td>
</tr>
<tr>
<td>ラット SD 雌雄 10匹/群</td>
<td>吸入 (蒸気)</td>
<td>4週間</td>
<td>0、20、32、86 mg/m³</td>
<td>20 mg/m³ 以上: 眼・鼻部の刺激 (濃度依存性) 鼻汁と凝固血液で覆われた眼 上部気道に組織学的変化 (気管・鼻甲介に扁平上皮化生・炎症細胞浸潤、鼻甲介上皮過形成) 肺に組織学的変化 (限局性肺胞内出血・泡状マクロファージ出現) 32 mg/m³ 以上: 体重増加抑制 肺に出血巣 組織学的変化 (気管上皮過形成、気管支上皮過形成・扁平上皮化生) NOAEL 求まらず</td>
<td>Monsanto, 1982d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1 mg/m³ 以上: 鼻部と眼への刺激性 (濃度依存性) 鼻腔粘膜上皮過形成と粘膜上皮化生、鼻部炎症 9.8 mg/m³ 群: 鼻汁、ある場合には眼漏、くしゃみ LOAEL 1.1 mg/m³ (鼻部での可逆的な組織学的変化を指標にした場合) (本評価書の判断)</td>
<td>Monsanto, 1982c; Short et al., 1988</td>
</tr>
<tr>
<td>ハムスター Engle 雌雄 8週齢以上 15匹/群</td>
<td>吸入</td>
<td>6か月間</td>
<td>0、1.1、3.3、9.8 mg/m³ (無水マレイン酸とマレイン酸の合計値)</td>
<td>死亡率、眼科的検査、血液学的・血液生化学的検査、尿検査に異常なし 1.1 mg/m³ 以上: 鼻部と眼への刺激性 (濃度依存性) 鼻腔粘膜上皮過形成と粘膜上皮化生、鼻部炎症 9.8 mg/m³ 群: 鼻汁、ある場合には眼漏、くしゃみ LOAEL 1.1 mg/m³ (鼻部での可逆的な組織学的変化を指標にした場合) (本評価書の判断)</td>
<td>Monsanto, 1982c; Short et al., 1988</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1 mg/m³ 群以上: 鼻部と眼への刺激性 鼻部炎症 鼻腔粘膜上皮化生 3.3 mg/m³ 群以上: 鼻腔粘膜上皮過形成 9.8 mg/m³ 群: 鼻汁、著しいあえぎ呼吸</td>
<td></td>
</tr>
</tbody>
</table>

肝臓: 細胞質の空胞化を伴う肝細胞腫大
7.3.5 生殖・発生毒性

無水マレイン酸の実験動物に対する生殖・発生毒性試験結果を表7-3に示す。

雌雄の SD ラットを用いた二世代生殖試験が行われている (Monsanto, 1982g; Short et al., 1986)。5、6 頻齢の雄 10 匹、雌 20 匹に無水マレイン酸 0、20、55、150 mg/kg/日 (溶媒: コーン油) を 80 日間以上強制経口投与した後交配し、F1 を得た。22 日齢の F1 の雄 10 匹、雌 20 匹に F0 と同様に 80 日間以上無水マレイン酸を経口投与した後交配 ((150 mg/kg/日群を除く)、F2 を得た。F1 の 150 mg/kg/日群は雌雄ともに死亡したため、150 mg/kg/日群はこの世代で終了した。150 mg/kg/日群では、F0、F1 とも体重増加抑制、死亡率の増加が認められ、受胎 (精) 能については、F1 及び F2 の雌の妊娠率と雄の受胎率に有意な減少はなかったことから、親動物への毒性の NOAEL は 55 mg/kg/日であった。また、F1 及び F2 の同腹児数と生存児数は、それぞれ F1 世代では 150 mg/kg/日まで、F2 世代では 55 mg/kg/日 (150 mg/kg/日群は設定していない) まで対照群との差はなかった。F1 及び F2 出生児の体重にも被験物質による変化は認めなかった。組織学的検査では、F0 親の 150 mg/kg/日群で腎皮質壊死が雄で 60%、雌で 15%に観察され、他 の群ではみられなかった。F1 世代では、成熟雌の腎臓の絶対重量が 20、55 mg/kg/日で有意に増加したが、組織学的変化は伴っていなかった。以上から、二世代にわたる試験で、親動物への毒性は体重の減少を指標にして NOAEL は 55 mg/kg/日であり、また、試験可能であった 55 mg/kg/日群で妊娠への影響はみられず、発生毒性の NOAEL は 55 mg/kg/日であると報告している (Monsanto, 1982g; Short et al., 1986)。

妊娠SDラットの器官形成期（妊娠6～15日）に無水マレイン酸 0、30、90、140 mg/kg/日 (溶媒: コーン油) を強制経口投与した催奇形性試験で、妊娠6日から9日かけて 30 mg/kg/日以上で母動物の体重増加抑制又は体重減少がみられたが、妊娠15、20日では30 mg/kg/日以上で母動物の平均体重は対照群の5%以内の変化であった。どの投与群でも胎児の骨格と軟組織に異常の増加はみられず、投与に関連した無水マレイン酸の発生毒性は観察されなかった (Monsanto, 1982g; Short et al., 1986)。
以上、無水マレイン酸の器官形成期の妊娠ラットへの経口投与で、催奇形性を含む発生毒性はみられなかった。ラットの二世代試験では、親動物への毒性は体重の減少が150 mg/kg/日で認められ、NOAELは55 mg/kg/日であった。また、試験可能であった55 mg/kg/日の用量までは生殖への影響はみられず、生殖毒性のNOAELは55 mg/kg/日である。

表 7-3 無水マレイン酸の生殖・発生毒性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラットSD</td>
<td>強制経口</td>
<td>交配前 80日間以上</td>
<td>F0: 5, 6週齢で投与開始 F1: 22日齢で投与開始</td>
<td>F1及びF2の雌の妊娠率と雄の受胎率に有意な減少なし F1・F2出生児:同腹児数、生存児数、体重に投与関連の変化なし。</td>
<td>Monsanto, 1982g; Short et al., 1986</td>
</tr>
<tr>
<td>雄10匹/群 雌20匹/群</td>
<td>二世代生殖試験</td>
<td>0, 20, 55, 150 mg/kg/日 (溶媒:コーン油)</td>
<td>F1: 視覚:腎臓絶対重量の増加 (108%) (ただし、組織学的変化なし) 20 mg/kg/日群: F1: 視覚:腎臓絶対重量の増加 (111%) (ただし、組織学的変化なし) F1・F2出生児:同腹児数、生存児数、体重に投与関連の変化なし。</td>
<td></td>
<td></td>
</tr>
<tr>
<td>150 mg/kg/日群:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラットSD</td>
<td>強制経口</td>
<td>妊娠6-15日帝王切開 (なお、交尾確認日を妊娠0日とした。)</td>
<td>0, 30, 90, 140 mg/kg/日 (溶媒:コーン油)</td>
<td>妊娠6日から9日:体重増加抑制又は体重減 (有意差なし) 妊娠15, 20日:平均体重は対照群の5%以内 胎児:同腹児数、着床後胚損失率に異常なし。胎児の軟組織・骨格に投与関連の影響なし</td>
<td>Monsanto, 1982g; Short et al., 1986</td>
</tr>
<tr>
<td>雌</td>
<td>交配25匹/群</td>
<td>妊娠20日帝王切開</td>
<td>妊娠20日帝王切開</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.3.6 遺伝毒性
無水マレイン酸の遺伝毒性試験結果は表 7-4 に示す。
無水マレイン酸の in vitro 試験について、ネズミチフス菌によるエームス試験 (Haworth et al., 1983; Ishidate et al., 1981; Monsanto, 1982f; U.S.NTP, 1980) 及び枯草菌 Bacillus subtilis を用いた DNA 組換え試験 (Kawachi et al., 1980) で陰性であった。チャイニーズハムスター肺線維芽 CHL 細胞 (CHL 細胞) による染色体異常試験で構造異常が陽性、数的異常が陰性であった (祖父尼俊雄 監修 染色体異常試験データ集, 1999)。
無水マレイン酸の in vivo 染色体異常試験では、雌雄のラットに無水マレイン酸 0、1、100 mg/m3 を 6 時間吸入暴露し、6、24、48 時間後に骨髄細胞を観察したところ、染色体異常出現頻度の増加はみられなかった (Monsanto, 1983)。
一方、マレイン酸では、ネズミチフス菌によるエームス試験で代謝活性化の有無にかからず 10 mg/プレートまで陰性であった (Sayato et al., 1987)。マレイン酸、マレイン酸一ナトリウム塩、マレイン酸二ナトリウム塩は、代謝活性化の有無にかかずネズミチフス菌によるエームス試験で陰性であった (Lake et al., 1988)。

以上、無水マレイン酸の遺伝毒性については、復帰突然変異試験で陰性、染色体異常試験では in vitro で陽性、in vivo で陰性であるが、データが少なく、遺伝毒性の有無を明確に判断することはできない。

<table>
<thead>
<tr>
<th>表 7-4 無水マレイン酸の遺伝毒性試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験系</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>無水マレイン酸</td>
</tr>
<tr>
<td>in vitro</td>
</tr>
<tr>
<td>復帰突然変異</td>
</tr>
<tr>
<td>染色体異常</td>
</tr>
<tr>
<td>in vivo</td>
</tr>
<tr>
<td>マレイン酸</td>
</tr>
<tr>
<td>in vitro</td>
</tr>
<tr>
<td>マレイン酸、マレイン酸一ナトリウム塩、マレイン酸二ナトリウム塩</td>
</tr>
<tr>
<td>in vitro</td>
</tr>
</tbody>
</table>

ND:データなし, CHL 細胞: チャイニーズハムスター肺線維芽 CHL 細胞
7.3.7 発がん性
無水マレイン酸の実験動物に対する発がん性試験結果を表7-4に示す。
2か月齢、体重約100 gの雄ラット（系統不明）に無水マレイン酸1.0 mg（溶媒：落花生油）を2回/週、61週間右腹側部に皮下投与し106週まで観察した試験で、80週目に2匹の投与部位に線維肉腫がみられたという報告がある（Dickens and Jones, 1963）、実験条件など詳細な記載はなく信頼性に乏しい。
雌雄のF344ラットに無水マレイン酸0、10、32、100mg/kg/日を2年間混餌投与した毒性/発がん性試験で、無水マレイン酸投与に関連した腫瘍の発現はみられなかった（CIIT, 1983）。
一方、マレイン酸では、2か月齢の雄ラットにマレイン酸ナトリウム1.0 mg（水溶液）を2回/週、61週間右腹側部に皮下投与し106週まで観察した試験で、投与部位には腫瘍は認められなかったが、偶発性を疑わせる甲状腺がんが2例に発現したという報告がある（Dickens and Jones, 1963）。他にも、ラットの混餌試験で発がん性が認められないという報告がある（Fitzhugh and Nelson, 1947）。
以上、無水マレイン酸の実験動物に対する発がん性は認められていない。
無水マレイン酸の国際機関等での発がん性評価を表7-5に示す。
IARCでは無水マレイン酸の発がん性を評価していない。ACGIHではA4（ヒトに対して発がん性が分類できない物質）と評価している。

<p>| 表7-5 無水マレイン酸の発がん性試験結果 |</p>
<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット 系統不明 雄 2か月齢 約100 g 匹数不明</td>
<td>皮下</td>
<td>61週間 2回/週 (106週まで観察)</td>
<td>1.0 mg（溶媒：落花生油）</td>
<td>80週目に腹側部（投与部位）に線維肉腫（2匹）</td>
<td>Dickens & Jones, 1963</td>
</tr>
<tr>
<td>ラット F344 雌雄 7週齢</td>
<td>混餌</td>
<td>2年間</td>
<td>0、10、32、100mg/kg/日</td>
<td>腫瘍の発生なし</td>
<td>CIIT, 1983</td>
</tr>
</tbody>
</table>

<p>| 表7-6 無水マレイン酸の国際機関等での発がん性評価 |</p>
<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分類</th>
<th>分類基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC(2004)</td>
<td>—</td>
<td>発がん性について評価されていない。</td>
</tr>
<tr>
<td>日本産業衛生学会(2004)</td>
<td>—</td>
<td>発がん性について評価されていない。</td>
</tr>
<tr>
<td>U.S.EPA(2004b)</td>
<td>—</td>
<td>発がん性について評価されていない。</td>
</tr>
<tr>
<td>U.S.NTP(2002)</td>
<td>—</td>
<td>発がん性について評価されていない。</td>
</tr>
</tbody>
</table>
7.4 ヒト健康への影響（まとめ）
無水マレイン酸は、生体に取り込まれてマレイン酸に加水分解され、排泄されると予想される。マレイン酸は、ラットやイヌの腹腔内・静脈内投与で腎臓の尿細管を障害して再吸収を抑制する。

ヒトでの無水マレイン酸の臭気の感知下限は 0.32 ppm (1.3 mg/m³) であり、2.5 ppm (10.2 mg/m³) 以上で耐えがたい刺激性を認める。職業暴露で 4.4 mg/m³ 以上で眼に角膜炎様の変化がみられた例がある。

感作性については、無水マレイン酸 (0.83 mg/m³) に暴露されたヒトでの誘発試験及び無水マレイン酸取扱い作業者でのヒスタミン誘発試験で、喘息発作を認めた報告がある。マレイン酸等を用いる不飽和ポリエステル樹脂の生産作業に従事した男性作業員の症例では、職業性のアレルギー性接触じん帯が報告されている。

実験動物に対する毒性では、無水マレイン酸の経口投与による急性毒性の LD₅₀ 値は、マウス、ラット、ウサギ、モルモットでそれぞれ 465, 235～1,050, 875, 390 mg/kg であり、経皮投与による LD₅₀ 値はウサギで 398～2,620 mg/kg、モルモットで 20 mg/kg 超、腹腔内投与ではラットで 97 mg/kg であった。

無水マレイン酸は、ウサギの眼及び皮膚に対して腐食性を示した。

無水マレイン酸は、モルモットでの皮膚感作性試験で陽性であった。

無水マレイン酸の反復投与による影響として、鼻と眼への刺激、及びそれに伴う病理組織学的変化、更に腎尿細管壊死等が認められた。そこで、雌雄の SD ラットに無水マレイン酸を 90 日間混餌投与した試験で、100 mg/kg/日以上の雄群で、腎臓に用量依存的に肉眼的・病理組織学的変化がみられた。腎臓の肉眼的・病理組織学的変化を指標として、この試験の NOAEL は 40 mg/kg/日である。吸入暴露では、無水マレイン酸による鼻と眼への刺激性、鼻部炎症、鼻腔粘膜上皮の過形成と粘膜上皮化生が主な影響であった。ラット、ハムスター、サルでの 6か月間吸入暴露試験で、NOAEL は求まらなかった。鼻と眼への可逆的な影響を指標にした場合に、LOAEL はともに 1.1 mg/m³（無水マレイン酸とマレイン酸の合計値）であった。

無水マレイン酸の器官形成期の妊娠ラットへの経口投与で、発生毒性及び催奇形性はみられなかった。雌雄の SD ラットに無水マレイン酸 0、20、55、150 mg/kg/日（溶媒：コーン油）を交配前 80 日間以上強制経口投与した二世代試験では、試験可能であった 55 mg/kg/日の用量までは生殖への影響はみられず、生殖毒性の NOAEL は 55 mg/kg/日である。

無水マレイン酸は、遺伝毒性では、ネズミチフス菌によるエームス試験及び枯草菌を用いた組換え試験で陰性、in vitro の染色体異常試験で陽性、in vivo の染色体異常試験で陰性であった。

無水マレイン酸の実験動物に対する発がん性は認められていない。IARC では無水マレイン酸の発がん性を評価していない。
文献 (文献検索時期、2004 年 4 月1)

ACGIH, American Conference of Governmental Industrial Hygienists (2004) TLVs and BEIs.

1) データベースの検索を 2004 年 4 月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。
Wienheim.

Dow Chemical (1975a) Plasma levels of maleic anhydride in dogs fed 60 mg/kg/day for 90 days. EPA/OTS document No. 878214750, NTIS/OTS 0206649.

Dow Chemical (1975c) 90-day dietary feeding studies on maleic anhydride in beagle dogs. EPA/OTS document No. 878214747, NTIS/OTS 0206649.

Monsanto (1982e) Six-month multispecies inhalation toxicity study. International Research and
Development Corporation, Mattawan, Michigan, EPA/OTS document No. 878214772, Microfiche No. NTIS/OTS 0206655. (Short et al., 1988 参照)

Monsanto (1982g) Three generation reproduction study in rats (modified to a two generation study). International Research and Development Corporation, Mattawan, Michigan, EPA/OTS document No. 878214777, Microfiche No. NTIS/OTS 0206655. (Short et al., 1986 参照).

Monsanto (1983) In vivo bone marrow chromosome study in rats (inhalation exposure), with cover memo. EPA/OTS document No. 878214783, NTIS/OTS 0206655.

RTECS, The Registry of Toxic Effects of Chemical Substances (1997)

U.S. NTP, National Toxicology Program (1980) (http://ntp-apps.niehs.nih.gov/ntp_tox/index.cfm?clearhistory=yes&endpointlist=SA&fuseaction=salmonella%2EstudyDetails&study%5Fno=051477&cas%5Fno=108%2D31%2D6 から引用)

落合孝則, 内山敬司, 佐久間康一 (1978) エポキシ樹脂による感作性皮膚炎の一例. 産業医学, 20, 66.
経済産業省 (2004) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律第 11 条に基づく開示 (排出年度 : 平成 14 年度, 平成 13 年度(修正版)).
製品評価技術基盤機構 (2005) 化学物質のリスク評価及びリスク評価手法の開発プロジェクト/平成 16 年度研究報告書 (新エネルギー・産業技術総合開発機構 委託事業).
イ・シー, 東京.
田中茂 (1956) 無水マレイン酸による眼障害. 労働科学, 32, 117-126.
有害性評価実施機関名、有害性評価責任者及び担当者一覧

有害性評価実施機関名：財団法人化学物質評価研究機構

有害性評価責任者及び担当者

<table>
<thead>
<tr>
<th>有害性評価責任者</th>
<th>高月 峰夫</th>
</tr>
</thead>
<tbody>
<tr>
<td>有害性評価担当者</td>
<td></td>
</tr>
<tr>
<td>1．化学物質の同定情報</td>
<td>林 浩次</td>
</tr>
<tr>
<td>2．一般情報</td>
<td>林 浩次</td>
</tr>
<tr>
<td>3．物理化学的性状</td>
<td>林 浩次</td>
</tr>
<tr>
<td>4．発生源情報</td>
<td>独立行政法人製品評価技術基盤機構</td>
</tr>
<tr>
<td>5．環境中運命</td>
<td>林 浩次</td>
</tr>
<tr>
<td>6．生態影響評価</td>
<td>野坂 俊樹</td>
</tr>
<tr>
<td>7．ヒト健康影響評価</td>
<td>山根 重孝</td>
</tr>
</tbody>
</table>

有害性評価書外部レビューや観

環境中の生物への影響（6章）

吉岡 義正 大分大学 教育福祉科学部

ヒト健康への影響（7章）

山下 敬介 広島大学大学院 解剖学・発生生物学研究室

改訂記録

2005年3月 Ver.0.4 初期リスク評価指針 ver.1.0 に基づき原案作成
2006年8月 Ver.0.4 初期リスク評価指針 ver.2.0 に基づく修正、及び新たな情報の追加
2006年12月 Ver.1.0 経済産業省化学物質審議会管理部会・審査部会

第28回安全評価管理小委員会審議了承