有害性評価書

Ver. 1.0

No.68

1-アリルオキシ-2,3-エポキシプロパン

1-Allyloxy-2,3-epoxypropane

化学物質排出把握管理促進法政令号番号：1-23

CAS 登録番号：106-92-3

新エネルギー・産業技術総合開発機構

委託先 財団法人 化学物質評価研究機構

委託先 独立行政法人 製品評価技術基盤機構
目次

1. 化学物質の同定情報..1
 1.1 物質名 ..1
 1.2 化学物質審査規制法官報公示整理番号 ..1
 1.3 化学物質排出把握管理促進法政令号番号 ...1
 1.4 CAS 登録番号 ..1
 1.5 構造式 ..1
 1.6 分子式 ..1
 1.7 分子量 ..1

2. 一般情報..1
 2.1 別名 ..1
 2.2 純度 ..1
 2.3 不純物 ..1
 2.4 添加剤又は安定剤 ...1
 2.5 現在の我が国における法規制 ...1

3. 物理化学的性状..1

4. 発生源情報...2
 4.1 製造・輸入量等..2
 4.2 用途情報 ..2
 4.3 排出源情報..3
 4.3.1 化学物質排出把握管理促進法に基づく排出源 ..3
 4.3.2 その他の排出源 ...4
 4.4 排出経路の推定 ..4

5. 環境中運命 ...4
 5.1 大気中での安定性 ..4
 5.2 水中での安定性 ..5
 5.2.1 非生物的分解性 ..5
 5.2.2 生分解性 ...5
 5.2.3 下水処理による除去 ...5
 5.3 環境水中での動態 ..5
 5.4 生物濃縮性 ...5

6. 環境中の生物への影響 ..6
6.1 水生生物に対する影響...6
 6.1.1 微生物に対する毒性..6
 6.1.2 藻類に対する毒性...6
 6.1.3 無脊椎動物に対する毒性...6
 6.1.4 魚類に対する毒性...6
 6.1.5 その他の水生生物に対する毒性...6

6.2 陸生生物に対する影響...6
 6.2.1 微生物に対する毒性..6
 6.2.2 植物に対する毒性...7
 6.2.3 動物に対する毒性...7

6.3 環境中の生物への影響（まとめ）..7

7. ヒト健康への影響..7
 7.1 生体内運命...7
 7.2 疫学調査及び事例...9
 7.3 実験動物に対する毒性..10
 7.3.1 急性毒性...10
 7.3.2 刺激性及び腐食性..11
 7.3.3 感作性...11
 7.3.4 反復投与毒性..11
 7.3.5 生殖・発生毒性..13
 7.3.6 遺伝毒性..14
 7.3.7 発がん性..17
 7.4 ヒト健康への影響（まとめ）...18

文 献 ..20

有害性評価実施機関名、有害性評価責任者及び担当者一覧 ...24

有害性評価報告書外部レビューや一覧 ...24
1. 化学物質の同定情報
1.1 物質名
1-アリルオキシ-2,3-エポキシプロパン
1.2 化学物質審査規制法官報公示整理番号
2-393
1.3 化学物質排出把握管理促進法政令号番号
1-23
1.4 CAS登録番号
106-92-3
1.5 構造式

\[
\begin{align*}
H_2C\equiv\text{CH-CH}_2\text{-O-CH}_2\text{-CH-CH}_2
\end{align*}
\]

1.6 分子式
C_{6}H_{10}O_{2}
1.7 分子量
114.14

2. 一般情報
2.1 別 名
アリルグリシジルエーテル

2.2 純 度
98%以上（一般的な製品）(化学物質評価研究機構, 2002)

2.3 不純物
不明

2.4 添加剤又は安定剤
不明

2.5 現在の我が国における法規制
化学物質排出把握管理促進法：第一種指定化学物質
化学物質審査規制法：指定化学物質（第二種監視化学物質）
消防法：危険物第四類第二石油類
労働安全衛生法：危険物引火性の物、名称等を通知すべき有害物、変異原性が認められた既存化学物質
船舶安全法：引火性液体類
航空法：引火性液体
港則法：引火性液体類

3. 物理化学的性状
外観：無色液体
融点：-100℃（凝固点）(IPCS, 1999)
沸点: 154℃ (IPCS, 1999)
引火点: 48℃ (開放式) (IPCS, 1999)
発火点: 57℃ (NFPA, 2002)
爆発限界: データなし
沸点: 154℃ (IPCS, 1999)
引火点: 48℃ (開放式) (IPCS, 1999)
発火点: 57℃ (NFPA, 2002)
爆発限界: データなし

比重量: 0.9698 (20℃/4℃) (U.S. NLM:HSDB, 2003)
蒸気密度: 3.93 (U.S. NLM:HSDB, 2003)
蒸気圧: 0.63 kPa (25℃) (IPCS, 1999)
分配係数: オクタノール/水分配係数 log Kow = 0.34 (測定値) 0.45 (推定値) (SRC:KowWin, 2003)
解離定数: 解離基なし
スペクトル: 主要マススペクトルフラグメント
m/z 41 (基準ピーク = 1.0)、57 (0.83)、31 (0.37) (NIST, 1998)
溶解性: 水: 140 g/L (IPCS, 1999)
トルエン、アセトン、オクタンなどの有機溶媒: 混和 (U.S. NLM:HSDB, 2003)
ヘンリー定数: 0.248 Pa・m^3/mol (2.45 × 10^{-6} atm・m^3/mol) (25℃、推定値) (SRC:HenryWin, 2003)
換算係数: (気相、20℃) 1 ppm = 4.75 mg/m^3、1 mg/m^3 = 0.211 ppm
その他のアリル基及びエポキシ基は反応性に富むので合成原料に使われる (化学物質評価研究機構, 2005)

4. 発生源情報
4.1 製造・輸入量等
1-アリルオキシ-2,3-エポキシプロパンの2001年度の製造・輸入量は3,202トンとなっている（経済産業省, 2003）。
また、近年の製造量、輸入量等を別途調査した結果を表4-1に示した（製品評価技術基盤機構, 2004）。
製造量は1998年から2002年までの5年間で1,000トン増加しており、輸出量もほぼ同様の傾向を示している。

<table>
<thead>
<tr>
<th>カラム</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>2,500</td>
<td>2,700</td>
<td>2,900</td>
<td>3,100</td>
<td>3,500</td>
</tr>
<tr>
<td>輸入量</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>輸出量</td>
<td>1,600</td>
<td>1,700</td>
<td>2,000</td>
<td>2,200</td>
<td>2,500</td>
</tr>
<tr>
<td>国内供給量</td>
<td>900</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
<td>1,100</td>
</tr>
</tbody>
</table>

（製品評価技術基盤機構, 2004）

4.2 用途情報
1-アリルオキシ-2,3-エポキシプロパンの用途及びその使用割合は表4-2の通りである（製品
評価技術基盤機構，2004）。

多くのFRP ガラス繊維などの処理剤であるシランカップリング剤の合成原料として使用されている。その他は、水処理剤（凝集剤）やエピクロルヒドリンゴムの合成原料として、また不飽和ポリエステル樹脂やアルキッド樹脂などの樹脂改質剤の合成原料として利用されている。

表 4-2 1-アルリオキシ-2,3-エポキシプロパンの用途別使用量の割合

<table>
<thead>
<tr>
<th>用途</th>
<th>割合（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>シランカップリング剤合成原料</td>
<td>65</td>
</tr>
<tr>
<td>合成樹脂原料等</td>
<td>35</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
</tr>
</tbody>
</table>

（製品評価技術基盤機構，2004）

4.3 排出源情報

4.3.1 化学物質排出把握管理促進法に基づく排出源

化学物質排出把握管理促進法に基づく「平成13年度排出量及び移動量並びに届出外排出量の集計結果」（経済産業省，環境省，2003a）（以下，2001年度PRTRデータ）によると、1-アルリオキシ-2,3-エポキシプロパンは1年間に全国合計で届出事業者から大気へ4トン排出され、廃棄物として27トン移動している。公共用水域及び土壌への排出及び下水道への移動はない。届出外排出量としては対象業種の届出外事業者から6kg、また、非対象業種、家庭、移動体からの排出量は推計されていない。

a. 届出対象業種からの排出量と移動量

2001年度PRTRデータに基づき、1-アルリオキシ-2,3-エポキシプロパンの対象業種別の環境媒体（大気、水域、土壌）への排出量と移動量を表4-3に示した。その際、経済産業省及び環境省による届出外事業者からの排出量推計値は環境媒体別とはなっていないため、業種ごとの大気、水域、土壌への配分は届出データと同じと仮定し、媒体別の排出量を推計した。

表 4-3 1-アルリオキシ-2,3-エポキシプロパンの届出対象業種別の環境媒体への排出量等（トン/年）

<table>
<thead>
<tr>
<th>業種名</th>
<th>届出</th>
<th>届出外</th>
<th>届出と届出外の排出量合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>排出</td>
<td>移動量</td>
<td>排出量（推計）1）</td>
</tr>
<tr>
<td></td>
<td>大気</td>
<td>水域</td>
<td>土壌</td>
</tr>
<tr>
<td>化学工業</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>プラスチック製品製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>石油製品・石炭製品製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>合計</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

（製品評価技術基盤機構，2004）

1）大気、水域、土壌への配分を届出データと同じと仮定し、推計した。
なお、2001年の1-アリルオキシ-2,3-エポキシプロパンの製造量及び製造段階での排出原単位（日本化学工業協会, 2002）から1-アリルオキシ-2,3-エポキシプロパンの製造段階における排出はないと推定される（製品評価技術基盤機構, 2004)。したがって、2001年度PRTRデータに基づく届出対象業種からの排出量は、製造段階ではなく、使用する段階での排出と考えられる。

b. 非対象業種、家庭及び移動体からの排出量
1-アリルオキシ-2,3-エポキシプロパンの非対象業種、家庭及び移動体からの排出量は推定対象となっていない（経済産業省, 環境省, 2003b）。

4.3.2 その他の排出源
調査した範囲内では、2001年度PRTRデータで推計対象としている以外の1-アリルオキシ-2,3-エポキシプロパンの排出源の情報は入手できなかった。

4.4 排出経路の推定
1-アリルオキシ-2,3-エポキシプロパンは、合成樹脂類の処理剤や改質剤の合成原料として使用されているという用途情報及び2001年度PRTRデータ等から判断し、製造段階からの排出ではなく、主たる排出経路は使用する段階からの排出と考えられる。
1-アリルオキシ-2,3-エポキシプロパンの放出シナリオとして、1年間に全国で、大気へ4トン排出され、水域及び土壌へは排出されていないと推計された。ただし、廃棄物及び下水道への移動量については、各処理施設における処理後の環境への排出を考慮していない。

5. 環境中運命
5.1 大気中での安定性
a. OHラジカルとの反応性
対流圏大気中では、1-アリルオキシ-2,3-エポキシプロパンとOHラジカルとの反応速度定数が4.0×10^{-11} cm^3/分子/秒（25℃、推定値）である（SRC:AopWin, 2003)。OHラジカル濃度を5×10^5～1×10^6分子/cm^3とした時の半減期は5～10時間と計算される。

b. オゾンとの反応性
対流圏大気中では、1-アリルオキシ-2,3-エポキシプロパンとオゾンとの反応速度定数が1.2×10^{-17} cm^3/分子/秒（25℃、推定値）である（SRC:AopWin, 2003)。オゾン濃度を7×10^{11}分子/cm^3とした時の半減期は1日と計算される。
c. 硝酸ラジカルとの反応性
1-アリルオキシ-2,3-エポキシプロパンと硝酸ラジカルとの反応性については、調査した範囲内では報告されていない。

5.2 水中での安定性
5.2.1 非生物的分解性
1-アリルオキシ-2,3-エポキシプロパンの加水分解半減期は、25℃、pH 7 では90年と推定されている（SRC:HydroWin, 2003）ので、水環境中での加水分解は無視できる。

5.2.2 生分解性
1-アリルオキシ-2,3-エポキシプロパンは、化学物質審査規制法に基づく好気的生分解性試験では、被験物質濃度30mg/L、活性汚泥濃度100mg/L、試験期間4週間の条件において、生物化学的酸素消費量（BOD）測定での分解率は37%であり、難分解性と判定されている。なお、全有機炭素（TOC）測定での分解率は60%、ガスクロマトグラフ（GC）測定での分解率は73%であった。試験中に1-アリルオキシ-2,3-エポキシプロパンの一部に水が付加して1-アリルオキシ-2,3-プロパンジオールを生じた（通商産業省, 1995）。他に、BOD5（5日間のBOD）が2.8%であったとの報告もある（Shell Chemie, 1975）。
なお、1-アリルオキシ-2,3-エポキシプロパンの嫌気的生分解性については調査した範囲内では報告されていない。

5.2.3 下水処理による除去
1-アリルオキシ-2,3-エポキシプロパンの下水処理による除去については、調査した範囲内では報告されていない。

5.3 環境水中での動態
1-アリルオキシ-2,3-エポキシプロパンは、土壌吸着係数Kocの値2（3章参照）から、水中の懸濁物質及び底質には吸着され難いと推定される。1-アリルオキシ-2,3-エポキシプロパンの水への溶解度は140gage/Lと大きく、蒸気圧は630Pa（25℃）であり、ヘンリー定数は0.248Pa・m³/mol（25℃）である（3章参照）。したがって、1-アリルオキシ-2,3-エポキシプロパンの水環境から大気へ揮散速度は遅いと推定される。
以上及び5.2より、環境水中に1-アリルオキシ-2,3-エポキシプロパンが排出された場合は、生分解され難いので大部分は長期間水中に留まり、一部は水が付加した1-アリルオキシ-2,3-プロパンジオールになると推定される。また、ゆっくりではあるが大気中への揮散により一部は除去されると推定される。

5.4 生物濃縮性
1-アリルオキシ-2,3-エポキシプロパンについては化学物質審査規制法に基づく濃縮性試験が実施されていない。しかし、1-アリルオキシ-2,3-エポキシプロパンのオクタノール/水分配係数log Kowの値0.34から、高濃縮性ではないと判定されている（通商産業省, 1995）。なお、オク
タノール/水分配係数 log Kow の値 0.34 から計算された生物濃縮係数 (BCF) は 3.2 である (SRC: BcfWin, 2003)。

6．環境中の生物への影響
6.1 水生生物に対する影響
6.1.1 微生物に対する毒性
　調査した範囲内では、1-アリルオキシ-2,3-エポキシブタンの微生物に関する試験報告は得られていない。

6.1.2 藻類に対する毒性
　調査した範囲内では、1-アリルオキシ-2,3-エポキシブタンの藻類に関する試験報告は得られていない。

6.1.3 無脊椎動物に対する毒性
　調査した範囲内では、1-アリルオキシ-2,3-エポキシブタンの無脊椎動物に関する試験報告は得られていない。

6.1.4 魚類に対する毒性
　1-アリルオキシ-2,3-エポキシブタンの魚類に対する毒性試験結果を表 6-1 に示す。淡水魚として、キンギョの 96 時間 LC50 は 30 mg/L であった (Bridie et al., 1979)。
　海水魚に対する急性毒性及び長期毒性の試験報告は得られていない。

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度 (℃)</th>
<th>硬度 (mg CaCO3/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carassius auratus (キンギョ)</td>
<td>3.3 g</td>
<td>APHA1)止水</td>
<td>20</td>
<td>ND</td>
<td>7.0</td>
<td>24 時間 LC50</td>
<td>78 (m)</td>
<td>Bridie et al., 1979</td>
</tr>
</tbody>
</table>

ND: データなし、(m): 測定濃度
1): 米国公衆衛生協会 (American Public Health Association) テストガイドライン

6.1.5 その他の水生生物に対する毒性
　調査した範囲内では、1-アリルオキシ-2,3-エポキシブタンのその他の水生生物 (両生類等）に関する試験報告は得られていない。

6.2 陸生生物に対する影響
6.2.1 微生物に対する毒性
　調査した範囲内では、1-アリルオキシ-2,3-エポキシブタンの微生物（土壤中の細菌や菌類
6.2.2 植物に対する毒性
調査した範囲内では、1-アリルオキシ-2,3-エポキシプロパンの植物に関する試験報告は得られていない。

6.2.3 動物に対する毒性
調査した範囲内では、1-アリルオキシ-2,3-エポキシプロパンの動物に関する試験報告は得られていない。

6.3 環境中の生物への影響（まとめ）
魚類に対する急性毒性は淡水魚のキンギョを用いた96時間 LC₅₀が30 mg/Lで、GHS急性毒性有害性区分 IIIに相当し、有害性を示す。海水種及び長期毒性の試験報告は得られていない。
また、藻類及び無脊椎動物、ならびにその他の生物種に対する試験報告は得られていない。

以上から、現時点で報告されている1-アリルオキシ-2,3-エポキシプロパンの水生生物に対する急性毒性は、魚類を用いた試験結果が1件あるのみであるが、その値はGHS急性毒性有害性区分IIIに相当し、有害性を示す。なお、1-アリルオキシ-2,3-エポキシプロパンは生分解され難く、環境中に排出される場合は、長期間水中に留まる可能性もあり（5.2.2及び5.3参照）、今後水系での生物の影響を評価するために、さらに長期毒性を含めたデータの集積が必要であろう。
得られた毒性データのうち水生生物に対する最小値は、魚類であるキンギョの96時間 LC₅₀の30 mg/Lである。

7. ヒト健康への影響
7.1 生体内運命
雄C3H/Hejマウスに濃度40 mg/mLの1-アリルオキシ-2,3-エポキシプロパン148 mg/kgを腹腔内投与又は63.9 mg/kgを経皮適用し、24時間後に採取した肝臓（腹腔内投与）、皮膚組織（経皮適用）からDNA付加体が検出された（Plna and Segerbak, 1997）。

雄C3H/Hejマウスに0、2、4 mg/匹を腹腔内投与し、24時間後に採取した血液中にヘモグロビン付加体が検出された。21日後に採取した血液中のヘモグロビン付加体レベルは初期値の1/2を維持し、血液中で安定であった（Licea Perez et al., 1997）。

1-アリルオキシ-2,3-エポキシプロパンの代謝及びヘモグロビン付加体形成は図7-1の経路でおこると推定されている。すなわち、1-アリルオキシ-2,3-エポキシプロパンのエポキシ環はエポキシヒドロラーゼ（EH）によって水分解され、1-アリルオキシ-2,3-ジヒドロキシプロパン（II）となり、さらにその二重結合はP450によってエポキシ化され、2,3-ジヒドロキシプロピルグリシルエーテル（III）となる。同時に、1-アリルオキシ-2,3-エポキシプロパンの二重結合はP450によってエポキシ化され、ジグリシルエーテル（I）を生じ、さらに（I）のエポキシ環はEHによって水分解され、同じく（III）を生じる。あるいは、（I）はヘモグロビンのN末端の
バリンと結合して付加体を形成する。この付加体のエポキシ環はさらに加水分解され、N-(2-ヒドロキシ-3-(2,3-ジヒドロキシ)プロポキシ)プロピルバリン (diOHPrGEVal) を生成する。また、タンパク質とのクロスリンクやグルタチオンとの結合を起こす可能性がある (Licea Perez and Osterman-Golkar, 2000)。

雄の C3H/Hej マウスに 1-アリルオキシ-2,3-エポキシプロパン 4 mg/匹を腹腔内投与し、5 及び 24 時間後に血液を採取した試験で、血中のヘモグロビン付加体である diOHPrGEVal 濃度はそれぞれ 2,300 及び 2,200〜5,600 pmol/g グロビン、また、1-アリルオキシ-2,3-エポキシプロパンの直接付加体である N-(2-ヒドロキシ-3-プロペニルオキシ)プロピルバリン (AGEVal) 濃度は 24 時間後に 1,600 pmol/g グロビンであった。一方、4 mg/匹の経皮投与では、AGEVal 濃度は 20 pmol/g グロビンであったが、diOHPrGEVal 濃度は検出限界以下であった (Licea Perez and Osterman-Golkar, 2000)。
7.2 疫学調査及び事例

a. 急性影響
1-アリルオキシ-2,3-エポキシプロパンは眼や呼吸器に対して強い刺激性を有し、吸入暴露により肺水腫を生じることがある。また、中枢神経の抑制作用を有する（後藤ら，1994）。

b. 慢性影響
1-アリルオキシ-2,3-エポキシプロパンを取り扱った実験者に、手指の皮膚炎（痒み、腫脹、水疱、白斑）、顔面の発赤、腫脹が生じたと報告されている（Hine et al., 1956）。

エポキシ化合物を取り扱って皮膚炎を示したヒトに対するパッチテストで、20人中2人が
0.25%の1-エリルオキシ-2,3-エポキシプロパンに陽性反応を示した（Fregert and Rorsman, 1964）。皮膚炎をおこしたガラス封止材の製造作業者に対するパッチテストで、原料の3-グリシジルオキシプロピルメトキシシランに不純物として含まれていた1-エリルオキシ-2,3-エポキシプロパンは、0.05%以上の濃度で陽性の反応を示した（Dooms-Goossens et al., 1995）。

ACGIHはTLVに感作性ありの注意表示の導入を検討している（ACGIH, 2001）。

7.3 実験動物に対する毒性
7.3.1 急性毒性
1-エリルオキシ-2,3-エポキシプロパンの実験動物における急性毒性試験結果を表7-1に示す（Dow Chemical, 1978; Hine et al., 1956; 後藤ら, 1994）。

a. 経口投与
マウス及びラットに経口投与した試験で、自発運動減少、運動失調、中枢神経系の抑制、流涙、呼吸困難がみられ、続いて昏睡、死亡した（Hine et al., 1956）。

SDラットに500〜2,000 mg/kgを経口投与した試験で、死亡例に立毛、下痢、嗜眠、500 mg/kg群の14日目生存例には刺激による前胃の角化亢進、腐食及び潰瘍がみられた（Dow Chemical, 1978）。

b. 吸入暴露
1-エリルオキシ-2,3-エポキシプロパンの蒸気をマウスに4時間（206〜774 ppm）及びラットに8時間（510〜880 ppm）暴露した試験で、中枢神経系の抑制、眼、呼吸器への強い刺激性症状（流涙、流涎、呼吸困難）を示し、ラットでは角膜混濁を生じた。死亡例には空気嚥下による腹部ガス貯留及び肺水腫がみられた（Hine et al., 1956）。

SDラット（6匹/群）に1-エリルオキシ-2,3-エポキシプロパン蒸気100〜2,600 ppmを7時間吸入させた試験で、100 ppm以上に刺激によるあえぎ呼吸、300 ppm以上に空気嚥下による胃の拡張、鼻甲介のうっ血及び浮腫、鼻からの浸出液、角膜混濁、肝腎及び腎臓のうっ血、500 ppm以上に肺水腫がみられた。なお、375 ppm以上の全例が死亡した（Dow Chemical, 1978）。

c. 経皮投与
New Zealand Whiteウサギ（4匹/群）に252〜2,000 mg/kgを経皮適用した試験で、適用部位は中等度から強度の浮腫、変色（紫色）を示した。死亡例に呼吸困難、嗜眠がみられたが、生存例にはこれらの変化なく、適用部位の皮膚に硬化がみられた（Dow Chemical, 1978）。

| 表7-1 1-エリルオキシ-2,3-エポキシプロパンの急性毒性試験結果 |
|-----------------|-----|-----|
| 経口 LD50 (mg/kg)| マウス | 390 |
| | ラット | 830 - 1,600 |
| 吸入 LC50 (ppm) | 270 (4時間) | 670 (8時間) |
| | 308 (7時間) | ND |
| 経皮 LD50 (mg/kg) | ND | ND |
| | 707 - 2,550 |

ND: データなし
7.3.2 刺激性及び腐食性
ウサギの皮膚に1-アリルオキシ-2,3-エポキシプロパンの原液 0.5 mL を適用し、72 時間観察した試験で、中等度の刺激性を示した (Hine et al., 1956)。

ウサギの眼に1-アリルオキシ-2,3-エポキシプロパンの原液 0.1 mL を適用し、48 時間観察した試験で、強度の刺激性を示したが、その後回復し、障害を残さなかった (Hine et al., 1956)。

7.3.3 感作性
調査した範囲内では1-アリルオキシ-2,3-エポキシプロパンの感作性に関する試験報告は得られていない。

7.3.4 反復投与毒性
1-アリルオキシ-2,3-エポキシプロパンの実験動物における反復投与毒性試験結果を表 7-2に示す。

a. 吸入暴露
B6C3F1マウス（雌雄各5匹/群）に1-アリルオキシ-2,3-エポキシプロパン 0, 25, 50, 100 ppm (0, 119, 238, 475 mg/m^3) を6時間/日, 5日間/週の頻度で2週間吸入暴露した試験で, 25 ppm以上の群の雌及び50 ppm以上の群の雄に体重減少がみられ, 50 ppm群の雌2匹, 雄1匹, 100 ppm群の雄5匹, 雌3匹が死亡した。100 ppm群の生存例に化膿性の鼻炎と鼻甲介上皮の扁平上皮化生がみられた (U.S. NTP, 1990)。

ICRマウス（雄10匹/群）に2.5, 7.1 ppm (12, 34 mg/m^3) を4, 9 または14日間 (6時間/日) 吸入暴露した試験で, 7.1 ppm群の4日間暴露動物に, 鼻腔の呼吸上皮及び嗅上皮のびらんがみられたが, 肺の傷害はなく, 9, 14日間暴露動物では鼻腔の呼吸上皮及び嗅上皮に扁平上皮化生がみられた。2.5 ppm群の呼吸器系組織に変化はなかった (Gagnaire et al., 1987)。

B6C3F1マウス（雌雄各10匹/群）に0, 1, 4, 10, 30 ppm (0, 5, 19, 48, 143 mg/m^3) を6時間/日, 5日間/週の頻度で13週間吸入暴露した試験で, 最低暴露濃度の1 ppm 以上で, 露暴露濃度に依存して, 雌雄いずれにも鼻腔の呼吸上皮, 嗅上皮の扁平上皮化生の発現頻度増加, 10 ppm以上に体重の低値, 30 ppm では鼻腔の呼吸上皮, 嗅上皮のびらんがみられた (U.S. NTP, 1990)。本評価書ではLOAELを1 ppm (5 mg/m^3) と判断する。

B6C3F1マウス（雌雄各50匹/群）に0, 5, 10 ppm (0, 24, 48 mg/m^3) を6時間/日, 5日間/週の頻度で102週間吸入暴露した試験で, 5 ppm以上の群に鼻腔の腺増生, 鼻腔の粘膜の化膿性炎症, 呼吸上皮の変性及び増生, 扁平上皮化生が高頻度に認められた (U.S. NTP, 1990)。本評価書ではLOAELを5 ppm (24 mg/m^3) と判断する。

Osborne-Mendel ラット（雌雄各5匹/群）に0, 25, 50, 100, 200, 500 ppm (0, 119, 238, 475, 950, 2,375 mg/m^3) を6時間/日, 5日間/週の頻度で2週間吸入暴露した試験で, 最低暴露濃度の25 ppm 以上で, 露暴露濃度に依存して雌雄いずれにも最終体重の低値及び鼻腔をはじめとする呼吸器の傷害がみられ, 200 ppm に呼吸困難及び鼻甲介上皮の扁平上皮化生, 500 ppm 群に上気道の上皮の壊死, 喉頭炎, 気管炎がみられ, 500 ppm 群では雌雄全例が死亡した (U.S. NTP,
Long-Evansラット（雄10匹/群）に0、260、400、600、900 ppm (0、1,235、1,900、2,850、4,275 mg/m³) を7時間/日、5日間/週の頻度で10週間吸入暴露した試験で、260 ppm以上の群に眼及び呼吸器の刺激、体重増加抑制、400 ppm群に角膜混濁、呼吸困難（気管支肺炎、肺気腫、気管支拡張等）、肝臓の斑状褪色、副腎肥大、腎臓の相対重量の増加がみられた。なお、600 ppm以上では死亡率の増加のため5週間後に全生存動物を剖検した（Hine et al., 1956）。

Osborne-Mendelラット（雌雄各10匹/群）に0、4、10、30、100、200 ppm (0、19、48、143、475、950 mg/m³) を6時間/日、5日間/週の頻度で13週間吸入暴露した試験で、最低暴露濃度の4ppm以上の群で、用量に依存して上部呼吸器の炎症、上皮過形成及び扁平上皮化生、10 ppm以上の群に体重増加抑制、肝臓の相対重量の増加、喉頭、咽頭、気管上皮の扁平上皮化生がみられた(U.S. NTP, 1990)。本評価書ではLOAELを4 ppm (19 mg/m³) と判断する。

Osborne-Mendelラット（雌雄各50匹/群）に0、5、10 ppm (0、24、48 mg/m³) を6時間/日、5日間/週の頻度で103週間吸入暴露した試験で、5 ppm以上の群に鼻腔の腺増生、鼻腔の粘膜の化膿性炎症、呼吸上皮の変性及び増生、扁平上皮化生が高頻度に認められた(U.S. NTP, 1990)。本評価書ではLOAELを5 ppm (24 mg/m³) と判断する。

以上のデータから、マウスの13週間吸入暴露試験で1 ppm以上の群に呼吸器の病理組織的変化がみられているため、本評価書では吸入による反復投与毒性試験のLOAELを1 ppm (5 mg/m³) と判断する。

表 7-2 1-アリルオキシ-2,3-エポキシプロパンの反復投与毒性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1</td>
<td>吸入暴露</td>
<td>13週間</td>
<td>0、1、4、10、30 ppm (0、5、19、48、143 mg/m³)</td>
<td>1 ppm以上:暴露濃度に応じた鼻腔の呼吸上皮、嗅上皮の扁平上皮化生の発現頻度増加</td>
<td>U.S. NTP, 1990</td>
</tr>
<tr>
<td>雄雌 各10匹/群</td>
<td>6時間/日</td>
<td>5日間/週</td>
<td></td>
<td>10 ppm以上:雌体重低値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 ppm:鼻腔の呼吸上皮、嗅上皮のびらん</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LOAEL:1ppm（本評価書の判断）</td>
<td></td>
</tr>
<tr>
<td>マウス B6C3F1</td>
<td>吸入暴露</td>
<td>102週間</td>
<td>0、5、10 ppm (0、24、48 mg/m³)</td>
<td>5 ppm以上:鼻腔の腫大、鼻腔の粘膜の化膿性炎症、呼吸上皮の変性及び増生、扁平上皮化生</td>
<td>U.S. NTP, 1990</td>
</tr>
<tr>
<td>雄雌 各50匹/群</td>
<td>6時間/日</td>
<td>5日間/週</td>
<td></td>
<td>LOAEL:5 ppm (24 mg/m³)（本評価書の判断）</td>
<td></td>
</tr>
<tr>
<td>ラット Long-Evans</td>
<td>吸入暴露</td>
<td>10週間</td>
<td>0、260、400、600、900 ppm (0、1,235、1,900、2,850、4,275 mg/m³)</td>
<td>260 ppm以上:眼及び呼吸器の刺激、体重増加抑制</td>
<td>Hine et al., 1956</td>
</tr>
<tr>
<td>雄10匹/群</td>
<td>7時間/日</td>
<td>5日間/週</td>
<td></td>
<td>400 ppm: 角膜混濁、呼吸困難（気管支肺炎、肺気腫、気管支拡張等）、肝臓の斑状褪色、副腎肥大、腎臓の相対重量の増加</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>600 ppm以上:死亡率の増加</td>
<td></td>
</tr>
</tbody>
</table>

12
7.3.5 生殖・発生毒性

1-アリルオキシ-2,3-エポキシプロパンの実験動物における生殖・発生毒性試験結果を表7-3に示す。

B6C3F1 マウス（8～9 週齢、雌雄各 20 匹/群）に 1-アリルオキシ-2,3-エポキシプロパン 0、4、10、30 ppm (0、19、48、143 mg/m³) を 6 時間/日、5 日間/週の頻度で 8 週間吸入暴露した後、各暴露群の雌雄を無処置の雌雄と交尾確認まで 1 週間同居させた試験で、妊娠マウスの約半数を妊娠 17 日目に帝王切開し、残りを分娩後 21 日目に児と共に剖検した。雄は暴露期間終了後 2 週間目に剖検し、精子の性状を検査した。本試験条件でマウスの繁殖成績に影響はみられなかった（U.S. NTP, 1990）。

Osborne-Mendel ラット（8 週齢、雌雄各 20 匹/群）に 1-アリルオキシ-2,3-エポキシプロパン 0、30、100、200 ppm (0、143、475、950 mg/m³) を 6 時間/日、5 日間/週の頻度で 8 週間吸入暴露した後、各暴露群の雌雄を無処置の雌雄と交尾確認まで 1 週間同居させた試験で、妊娠ラットの一部は妊娠 19 日目に帝王切開し、残りは分娩後 21 日目に児と共に剖検した。暴露期間に 200 ppm 群雄 2 匹が死亡し、1-アリルオキシ-2,3-エポキシプロパン暴露群の雄と同居させた雌（無処置）の妊娠成立数は 0、30、100、200 ppm 群のそれぞれで 15/20、9/20、4/20、1/18 匹、であり、暴露群の雌生では 30ppm 以上の用量で正常雌を妊娠させる能力（授精能）の低下がみられた。また、200 ppm 群の雌で妊娠黄体数の減少がみられた。暴露期間終了後 2 週間目に剖検した雌において、精巢上体精子数及び精子運動性に影響はなかったが、200 ppm 群に精子形態異常発現率の増加が認められた（U.S. NTP, 1990）。

以上のデータから、B6C3F1 マウスの生殖試験では最高用量の 30 ppm でも異常は認められていないが、Osborne-Mendel ラットの生殖試験で最低用量の 30 ppm でも雄の授精能低下が認められているため、NOAEL は得られなかった。本評価書では生殖試験の LOAEL を 30 ppm (143 mg/m³) と判断した。
7.3.6 遺伝毒性

1-アリルオキシ-2,3-エポキシプロパンの遺伝毒性試験結果を表7-4に、遺伝毒性試験結果のまとめを表7-5に示す。

a. 突然変異

a-1. in vitro

1-アリルオキシ-2,3-エポキシプロパンは、ネズミチフス菌TA100（塩基置換型）、TA98（フレームシフト型）を用いた復帰突然変異試験（スポットテスト）で、TA100はS9無添加条件、10mg/プレートで陽性であったが、TA98は陰性であった（Wade et al., 1979）。

ネズミチフス菌TA100、TA1535（塩基置換型）を用いた復帰突然変異試験で、S9添加の有無にかかわらず陽性であったが、TA98、TA1537は0.1〜10mg/プレートで陰性であった（Canter et al., 1986; U.S. NTP, 1990）。

ネズミチフス菌を用いた復帰突然変異試験で、TA100、TA1535はS9添加の有無にかかわらず陽性、TA98、TA1538は陰性を示した。TA1537はS9無添加条件、細胞毒性のみられない最高濃度のみ陽性であった（Shell Oil, 1984）。

大腸菌(WP2 uvr)を用いた復帰突然変異試験で、S9無添加条件1,000μg/mL以上、S9添加条件500μg/mL以上で陽性を示した（Shell Oil, 1984）。

肺炎桿菌を用いた彷徨試験で、S9無添加条件、57μg/mL以上の処理で陽性を示した（Voogd et al., 1981）。
a-2. in vivo

ショウジョウバエ (D. melanogaster Canton-S) の雄に 0、5,500 ppm を含む餌を 3 日間与えた後に Basc 雌と交配を行った伴性劣性致死突然変異試験で、陽性であった (U.S. NTP, 1990; Yoon et al., 1985)。

b. 染色体異常
b-1. in vitro

チャイニーズハムスター培養細胞 (CHO) を用いた染色体異常試験で、S9 無添加条件、150 µg/mL 以上で染色体異常を示す細胞数の発生頻度の増加がみられた (U.S. NTP, 1990)。

ラット培養肝細胞 (RL4) を用いた染色体異常試験で、S9 無添加条件、細胞毒性を示す 37.5 µg/mL の濃度で染色分体の切断頻度の増加がみられた (Shell Oil, 1984)。

b-2. in vivo

1-アリルオキシ-2,3-エポキシプロパンを 0、5,500 ppm 含む餌でショウジョウバエ (D. melanogaster Canton-S) の雄に 3 日間飼育した後に、雌 (X.Y.;y;bw;st) と交配を行った生殖細胞染色体の相互転座 (reciprocal translocation) 試験で陰性であった (U.S. NTP, 1990; Yoon et al., 1985) が、性染色体の欠失修復系の雄ショウジョウバエ (D. melanogaster) を同様に処理して雌と交配を行った mei-9a 試験では、転座が認められた (Zimmering, 1983; Zimmering et al., 1986)。

U.S. NTP の発がん性試験 (後述) の B6C3F1 マウスから得た末梢血の小核発現頻度を観察した試験で陽性を示した (Witt et al., 2000) が、B6C3F1 マウスに 200 mg/kg を 1 回腹腔内投与した後に末梢血を採取した小核試験では陰性の結果が得られた (U.S. NTP, 未公表)。

B6D2F1 マウス (雄 10 匹/群) に 2,000 mg/kg を 3 日間/週の頻度で 8 週間経皮適用後、1 週間ごとに 2 回の交配期間に無処置雌と交配させた優性致死試験で、妊娠 14 日目の胎児死亡率の増加はみられなかった (Dow Chemical, 1982)。

c. DNA 損傷性

1-アリルオキシ-2,3-エポキシプロパンは、大腸菌 (E. coli PQ37) を用いた SOS クロモテストで、S9 添加の有無にかかわらず、陽性を示した (Von Der Hude et al., 1990)。

チャイニーズハムスター培養細胞 (CHO) を用いた S9 無添加条件、1～50.2 µg/mL で、S9 添加条件、3.3～100 µg/mL で陽性を示した (U.S. NTP, 1990)。

チャイニーズハムスター培養細胞 (V79) を用いた SCE 試験で、822 µg/mL 以上の濃度、2 時間処理では陽性を示した (Von Der Hude et al., 1991)。

ヒト単核白血球を用いた不定期 DNA 合成 (UDS) 試験で、1～500 µg/mL の濃度、4.5 時間処理は UDS の増加を示さなかった (Dow Chemical, 1982)。

d. その他

1-アリルオキシ-2,3-エポキシプロパンは、酵母 Saccharomyces cerevisiae を用いた遺伝子変換試験で、S9 添加の有無にかかわらず、0.5 mg/mL 以上の濃度は陽性を示した (Shell Oil, 1984)。

マウス培養細胞 (C3H/10T1/2 由来 T1 株) を用いた形質転換試験で、S9 無添加条件では陽性を示した (Kowalski et al., 2001)。

以上のデータから 1-アリルオキシ-2,3-エポキシプロパンは、バクテリアを用いた DNA 損傷
性、突然変異性の試験系、昆虫を用いた突然変異性、染色体異常の試験系、培養細胞を用いたDNA損傷性、染色体異常の試験系、in vivoの小核試験でいずれも陽性を示したが、in vivoの優性致死試験では陰性を示した。1-アリルオキシ-2,3-エポキシプロパンの遺伝毒性は示すと判断する。

表7-4 1-アリルオキシ-2,3-エポキシプロパンの遺伝毒性試験結果

<table>
<thead>
<tr>
<th>試験系</th>
<th>試験材料</th>
<th>処理条件</th>
<th>用量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>復帰突然変異試験</td>
<td>ネズミチフス菌 (TA100, TA98)</td>
<td>スポットテスト</td>
<td>10 mg/plate</td>
<td>+ ND</td>
<td>Wade et al., 1979</td>
</tr>
<tr>
<td></td>
<td>ネズミチフス菌 (TA100, TA1535, TA98, TA1537)</td>
<td>ND</td>
<td>0.1-10 mg/plate</td>
<td>+ +</td>
<td>Canter et al., 1986; U.S. NTP, 1990</td>
</tr>
<tr>
<td></td>
<td>ネズミチフス菌 (TA100, TA1535, TA98, TA1538, TA1537)</td>
<td>ND</td>
<td>ND</td>
<td>+ +</td>
<td>Shell Oil, 1984</td>
</tr>
<tr>
<td></td>
<td>大腸菌 (WP2 uvr)</td>
<td>ND</td>
<td>S9:- >1,000 S9+: >500 μg/mL</td>
<td>+ +</td>
<td>Shell Oil, 1984</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+ ND</td>
<td>Voogd et al., 1981</td>
</tr>
<tr>
<td>染色体異常試験</td>
<td>チャイニーズハムスターCHO細胞</td>
<td>ND</td>
<td>S9:- 64.8-90 S9+: >100 μg/mL</td>
<td>+ +</td>
<td>U.S. NTP, 1990</td>
</tr>
<tr>
<td></td>
<td>ラット培養肝細胞 (RL4)</td>
<td>細胞毒性濃度処理</td>
<td>37.5 μg/mL</td>
<td>+ ND</td>
<td>Shell Oil, 1984</td>
</tr>
<tr>
<td>SOSクロモテスト</td>
<td>大腸菌 (E. coli PQ37)</td>
<td>ND</td>
<td>ND</td>
<td>+ +</td>
<td>Von Der Hude et al., 1990</td>
</tr>
<tr>
<td></td>
<td>チャイニーズハムスターCHO細胞</td>
<td>ND</td>
<td>S9:- 1-50 S9+: >300 μg/mL</td>
<td>+ +</td>
<td>U.S. NTP, 1990</td>
</tr>
<tr>
<td></td>
<td>チャイニーズハムスターV79細胞</td>
<td>2時間処理</td>
<td>822 μg/mL</td>
<td>+ ND</td>
<td>Von Der Hude et al., 1991</td>
</tr>
<tr>
<td>UDS試験</td>
<td>ヒト単核白血球</td>
<td>4.5時間処理</td>
<td>1-500 μg/mL</td>
<td>+ ND</td>
<td>Dow Chemical, 1982</td>
</tr>
<tr>
<td></td>
<td>酵母 (Saccharomyces cerevisiae)</td>
<td>ND</td>
<td>0.01-5.0 μg/mL</td>
<td>+ +</td>
<td>Shell Oil, 1984</td>
</tr>
<tr>
<td>形質転換試験</td>
<td>マウス培養細胞 (C3H/10T1/2 由来 T1株)</td>
<td>21日間培養</td>
<td>1-1,000ppm</td>
<td>+ ND</td>
<td>Kowalski et al., 2001</td>
</tr>
<tr>
<td>in vivo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>伴性劣性致死試験</td>
<td>ショウジョウバエ (D. melanogaster Canton-S) 雄</td>
<td>経口投与 (混餌) 3日間</td>
<td>0, 5,500 ppm</td>
<td>+</td>
<td>U.S. NTP, 1990; Yoon et al., 1985</td>
</tr>
<tr>
<td>相互転座試験</td>
<td>ショウジョウバエ (D. melanogaster Canton-S) 雄</td>
<td>経口投与 (混餌) 3日間</td>
<td>0, 5,500 ppm</td>
<td>-</td>
<td>U.S. NTP, 1990; Yoon et al., 1985</td>
</tr>
</tbody>
</table>
表 7-5 1-アリルオキシ-2,3-エポキシプロパンの遺伝毒性試験結果（まとめ）

<table>
<thead>
<tr>
<th>培養細胞</th>
<th>哺乳動物 (in vivo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA損傷性</td>
<td>突然変異性</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

+: 陽性；-：陰性；w+：弱い陽性；ND：データなし

7.3.7 発がん性

1-アリルオキシ-2,3-エポキシプロパンの実験動物に対する発がん性試験結果を表7-6に示す。

B6C3F1 マウス (雌雄各 50 匹/群) に 0, 5, 10 ppm (0, 24, 48 mg/m³) を 6 時間/日、5 日間/週の頻度で 102 週間吸入暴露した試験で、10 ppm 群の雌雄各 1 匹に鼻粘膜下の血管腫、雄 3 匹、雌 1 匹に呼吸上皮の腺腫が発生した (U.S. NTP, 1990)。

Osborne-Mendel ラット (雌雄各 50 匹/群) に 0, 5, 10 ppm (0, 24, 48 mg/m³) を 6 時間/日、5 日間/週の頻度で 103 週間吸入暴露した試験で、5 ppm 群の雌 1/48 匹に呼吸上皮の腺腫が、10 ppm 群の雄に鼻腔の嗅上皮の腺癌、呼吸上皮の腺腫及び扁平上皮がんが各 1/43 匹発生した (U.S. NTP, 1990)。
U.S. NTP が実施したアリルオキシ-2,3-エポキシプロパンの発がん性試験で、著者は、ラット、マウスでみられた鼻腔の原発性腫瘍は、発生率に有意差はないが対照群の背景データでも稀な腫瘍であり、発がん性を示唆する証拠と考えているが、本評価書は、現在ある知見のみによる1-アリルオキシ-2,3-エポキシプロパンの発がん性の有無を判断できない。

国際機関等での発がん性評価を表 7-7 に示す。
IARC では1-アリルオキシ-2,3-エポキシプロパンの発がん性を評価していない。

| 表 7-6 1-アリルオキシ-2,3-エポキシプロパンの発がん性試験結果 |
|---|---|---|---|---|
| 動物種等 | 投与方法 | 投与期間 | 投与量 | 結 果 |
| マウス | 吸入暴露 | 102 週間 | 0, 5, 10 ppm (0, 24, 48 mg/m³) | |
| B6C3F1 | 6 時間/日 | 5 日間/週 | |
| 雄雌 | 各 50 匹/群 | |
| 投与量 | 雄 | 雄 | |
| (ppm) | 0 | 5 | 10 | 0 | 5 | 10 |
| 観察数 | 鼻腔 | 50 | 50 | 50 | 49 | 49 | 50 |
| | 呼吸上皮の腺腫 | 0 | 0 | 1 | 0 | 0 | 1 |
| | 呼吸上皮の扁平上皮がん | 0 | 0 | 0 | 0 | 0 | 0 |
| ラット | 吸入暴露 | 103 週間 | 0, 5, 10 ppm (0, 24, 48 mg/m³) | |
| Osborne-Mendel | 6 時間/日 | 5 日間/週 | |
| 雄雌 | 各 50 匹/群 | |
| 投与量 | 雄 | 雄 | |
| (ppm) | 0 | 5 | 10 | 0 | 5 | 10 |
| 観察数 | 喉上皮の腺腫 | 44 | 46 | 43 | 49 | 48 | 47 |
| | 呼吸上皮の腺腫 | 0 | 0 | 1 | 0 | 0 | 0 |
| | 呼吸上皮の扁平上皮がん | 0 | 0 | 0 | 0 | 0 | 0 |

| 表 7-7 国際機関等での1-アリルオキシ-2,3-エポキシプロパンの発がん性評価 |
|---|---|---|---|
| 機 関 / 出 典 | 分 類 | 分 類 基 準 |
| IARC, 2002 | - | 発がん性について評価されていない。 |
| ACGIH, 2002 | A4 | ヒトに対して発がん性が分類できない物質。 |
| 日本産業衛生学会, 2002 | - | 発がん性について評価されていない。 |
| U.S. EPA, 2002 | - | 発がん性について評価されていない。 |
| U.S. NTP, 2001 | - | 発がん性について評価されていない。 |

7.4 ヒト健康への影響（まとめ）
アリルオキシ-2,3-エポキシプロパンのエポキシ環はエポキシヒドロラーゼによる加水分解やP450 による二重結合のエポキシ化などの経路で代謝され、また、ヘモグロビンとの付加体を形成する。この付加体のエポキシ環はさらに加水分解される。
1-アリルオキシ-2,3-エポキシプロパンのヒトにおける定量的な健康影響データは得られてい
実験動物に対する 1-アリルオキシ-2,3-エポキシプロパンの急性毒性試験の経口投与 LD₅₀ はラットで 390 mg/kg、マウスで 830〜1,600 mg/kg、ウサギの経皮適用では 707〜2,550 mg/kg、マウスの吸入暴露 LC₅₀ は 270 ppm (4 時間) である。中枢神経系の抑制、眼、皮膚、呼吸器に強い刺激性を示し、肺水腫をおこして死亡することがある。

皮膚炎患者に対するパッチテストで、陽性反応がみられているが、実験動物を用いた感作性試験報告はない。

反復吸入暴露では最低暴露濃度から刺激性による呼吸器への影響が観察されている。B6C3F₁マウスの 2 年間吸入暴露試験で最低用量の 5 ppm 以上の群に鼻腔の病理組織学的変化がみられ、さらに、マウスの 13 週間吸入暴露試験で 1 ppm 以上の群にも呼吸器の病理組織学的変化がみられているため、本評価書では吸入による反復投与毒性試験の LOAEL を 1 ppm (5 mg/m³) と判断した。

ラットに 8 週間暴露した後に交配した試験では、黄体数の減少と精子形態異常発現率の増加と妊娠成立数の低下が認められている。また、Osborne-Mendel ラットの生殖試験で最低用量の 30 ppm でも雄の授精能低下が認められているため、本評価書では生殖試験の LOAEL を 30 ppm (143 mg/m³) と判断した。

遺伝毒性は、バクテリアを用いた DNA 損傷性、突然変異性の試験系、昆虫を用いた突然変異性、染色体異常の試験系、培養細胞を用いた DNA 損傷性、染色体異常の試験系、in vivo の小核試験でいずれも陽性を示したが、in vivo の優性致死試験では陰性を示した。遺伝毒性は示すと判断する。

発がん性について、U.S. NTP は、ラット、マウスでみられた鼻腔の原発性腫瘍は、発生率に有意差はないが対照群の背景データでも稀な腫瘍であり、1-アリルオキシ-2,3-エポキシプロパンの発がん性を示唆する証拠となると考えているが、発がん性の有無に関しては判断できない。IARC は、1-アリルオキシ-2,3-エポキシプロパンの発がん性を評価していない。
ACGIH, American Conference of Governmental Industrial Hygienists (2001) Documentation of the threshold limit values and biological exposure indices., 7th ed. Cincinnati, OH.

ACGIH, American Conference of Governmental Industrial Hygienists (2002) TLVs and BEIs.

1) データベースの検索を 2002 年 4 月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。

U.S. NTP, National Toxicology Program (未公表、Witt et al., 2000 から引用)

& Sons, Inc., New York, NY.

化学物質評価研究機構 (2005) 調査資料 (未公表).

経済産業省, 環境省 (2003a) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律 (化学物質排出把握管理促進法)に基づく届出排出量及び移動量並びに届出外排出量の集計結果について (排出年度: 平成13年度).

後藤稠. 池田正之, 原一郎編 (1994) 産業中毒便覧・増補版. 医歯薬出版, 東京.

日本化学工業協会（2002）日本化学工業協会のレスポンシブル・ケアによるPRTRの実施について - 2002年度化学物質排出量調査結果 - （2001年度実績）。
日本産業衛生学会（2002）許容濃度等の勧告. 産衛誌, 44, 140-164.
有害性評価実施機関名，有害性評価責任者及び担当者一覧

有害性評価実施機関名：財団法人化学物質評価研究機構

<table>
<thead>
<tr>
<th>有害性評価責任者及び担当者</th>
</tr>
</thead>
<tbody>
<tr>
<td>有害性評価責任者</td>
</tr>
<tr>
<td>有害性評価担当者</td>
</tr>
<tr>
<td>化学物質の同定情報</td>
</tr>
<tr>
<td>一般情報</td>
</tr>
<tr>
<td>物理化学的性状</td>
</tr>
<tr>
<td>発生源情報</td>
</tr>
<tr>
<td>環境中運命</td>
</tr>
<tr>
<td>生態影響評価</td>
</tr>
<tr>
<td>キト健康影響評価</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

有害性評価報告書外部レビュー一覧

環境中の生物への影響（6章）

大嶋 雄治 九州大学大学院農学研究院

ヒト健康への影響（7章）

朝元 誠人 名古屋市立大学大学院医学研究科実験病態病理学講座

改訂記録

2003年3月 初期リスク評価作成指針 Ver3.0 に基づき原案作成
2004年3月 初期リスク評価指針 ver.1.0 に基づく4章の改訂、及びデータの更新
2005年1月 Ver.0.4 初期リスク評価指針 ver.1.0 に基づく修正、及び新たな情報の追加
2005年2月 Ver.1.0 経済産業省 化学物質審議会管理部会・審査部会

第21回安全評価管理小委員会審議了承

注）「初期リスク評価作成指針」を平成15年度に「初期リスク評価指針」として作成し直したため、ver.1.0とした。