化学物質の初期リスク評価書

Ver. 1.0
No. 41

クロロエタン
Chloroethane

化学物質排出把握管理促進法政令号番号：1-74
CAS 登録番号：75-00-3

2005年5月

新エネルギー・産業技術総合開発機構
委託先 財団法人 化学物質評価研究機構
委託先 独立行政法人 製品評価技術基盤機構
序文

目的
「化学物質の初期リスク評価書」は、独立行政法人 新エネルギー・産業技術開発機構から委託された化学物質総合評価管理プログラムの一環である「化学物質のリスク評価及びリスク評価手法の開発」プロジェクトの成果である。このプロジェクトは、「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(化学物質排出管理法)の対象化学物質を中心に有害性情報、排出量等の暴露情報など、リスク評価のための基礎データを収集・整備するとともに、これらを利用したリスク評価手法を開発し、評価するものである。
「化学物質の初期リスク評価書」では、環境中の生物及びヒト健康に対する化学物質のリスクについてスクリーニング評価を行い、その結果、環境中の生物あるいはヒト健康に悪影響を及ぼすことが示唆されると判断された場合は、その化学物質に対して更に詳細な調査、解析及び評価等の必要とされる行動の提案を行うことを目的とする。

初期リスク評価の対象
化学物質排出管理法第一種指定化学物質のうち、生産量、環境への排出量及び有害性情報などを基に選択した化学物質を初期リスク評価の対象とする。環境中の生物への影響については、有害性評価手法が国際的に整えられている水生生物を対象とする。ヒト健康への影響については、我が国の住民を対象とし、職業上の暴露は考慮しない。

公表までの過程
財団法人 化学物質評価研究機構及び独立行政法人 製品評価技術基盤機構が共同して評価書案を作成し、有害性評価（環境中の生物への影響及びヒト健康への影響）については外部の有識者によるレビューを受け、その後、経済産業省化学物質審議会管理部会・審査部会安全評価管理小委員会の審議、承認を得ている。また、暴露評価及びリスク評価については独立行政法人 産業技術総合研究所によるレビューを受けている。本評価書は、これらの過程を経て公表している。

<table>
<thead>
<tr>
<th>初期リスク評価書 Ver. 0.1</th>
<th>有害性評価</th>
<th>暴露評価</th>
<th>リスク評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>レビュー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>初期リスク評価書 Ver. 0.4 (原案)</td>
<td>有害性評価</td>
<td>暴露評価</td>
<td>リスク評価</td>
</tr>
<tr>
<td>レビュー</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>経済産業省 委員会審議・承認</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
初期リスク評価書 Ver. 1.0 (公表版) | 有害性評価 | 暴露評価 | リスク評価 |

なお、本評価書の作成に関する手法及び基準は「化学物質の初期リスク評価指針 Ver. 1.0」及び「作成マニュアル Ver. 1.0」として、ホームページ (http://www.nite.go.jp/) にて公開されている。
要約

クロロエタンは、エチルセルロースの合成原料やポリステレンの発泡助剤としての用途がある。化学物質排出把握管理促進法に基づく「平成13年度届出排出量及び移動量並びに届出外排出量の集計結果」によると、クロロエタンの届出排出・移動量は、2001年度1年間に全国で、大気に1,379トン、公共用水域に140kg排出され、廃棄物として320kg移動している。土壌への排出や下水道への移動はない。届出外排出量として対象業種の届出外事業者、非対象業種、家庭及び移動体からの排出は推計対象でない。

環境中の生物に対する暴露マージンと初期リスク評価：クロロエタンの河川水中濃度は、環境庁による1999年度の調査結果があり、AA→C類型の河川水中濃度の95パーセンタイルは0.026mg/Lであった。そこで、環境中の水生生物に対するリスクを評価する推定環境濃度（EEC）として、0.026mg/Lを採用した。水生生物に対して最も強い有禍性を示すデータとして、藻類であるセネデスムスの生長阻害に対する72時間EC10の2.7mg/Lを採用した。暴露マージン（MOE）100,000は、本評価における不確実係数500より大きく、現時点でではクロロエタンが環境中の水生生物に悪影響を及ぼすことはないと判断する。

ヒト健康に対する暴露マージンと初期リスク評価：大気（0.27mg/m³）、飲料水（地下水：0.029mg/L）、食物（魚類：1.3mg/kg（推定値））を経由したヒトの体重1kgあたりの1日摂取量を吸入、経口それぞれの経路として0.11、0.0044mg/kg/日と推定した。クロロエタンのヒトにおける定量的な健康影響データは得られていないため、ヒト健康への影響のリスク評価には長期の動物試験データを用いた。吸入経路では、ラットの13週間吸入試験における肝臓の相対重量の増加を指標としたNOAEL10,000ppm（26,800mg/m³、換算値3,600mg/kg/日）を採用した。経口経路では、影響を適切に評価できる試験結果は得られなかった。またクロロエタンの生殖・発生毒性については、マウスの妊娠6〜15日目に吸入暴露した試験における胎児の頭蓋骨の骨化遅延を指標としたNOAEL1,500ppm（4,020mg/m³、換算値1,700mg/kg/日）を採用した。反復投与毒性及び生殖・発生毒性に対する吸入経路における各MOE33,000,000及び15,000,000は、いずれもヒト健康に対する評価に用いた毒性試験結果の不確実係数500及び100より大きく、現時点ではクロロエタンがヒト健康に悪影響を及ぼすことはないと判断する。
目 次

1. 化学物質の同定情報.. 1
 1.1 物質名 .. 1
 1.2 化学物質審査規制法公報公示整理番号... 1
 1.3 化学物質排出把握管理促進法政令番号... 1
 1.4 CAS 登録番号... 1
 1.5 構造式 .. 1
 1.6 分子式 .. 1
 1.7 分子量 .. 1

2. 一般情報... 1
 2.1 別名 .. 1
 2.2 純度 .. 1
 2.3 不純物 .. 1
 2.4 添加剤又は安定剤... 1
 2.5 現在の我が国における法規制 .. 1

3. 物理化学的性状... 2

4. 発生源情報... 2
 4.1 製造・輸入量等.. 2
 4.2 用途情報 .. 3
 4.3 排出源情報 .. 3
 4.3.1 化学物質排出把握管理促進法に基づく排出源... 3
 4.3.2 その他の排出源 ... 4
 4.4 排出経路の推定 .. 4

5. 環境中運命... 5
 5.1 大気中での安定性 .. 5
 5.2 水中での安定性 ... 5
 5.2.1 非生物的分解性... 5
 5.2.2 生分解性 ... 5
 5.2.3 下水処理による除去 ... 5
 5.3 環境水中での動態 .. 5
 5.4 生物濃縮性 .. 6

6. 暴露評価... 6
6.1 環境中分布予測 .. 6
6.2 環境中濃度 .. 6
 6.2.1 環境中濃度の測定結果 ... 6
 6.2.2 環境中濃度の推定 ... 8
6.3 水生生物生息環境における推定環境濃度 .. 9
6.4 ヒトへの暴露シナリオ .. 9
 6.4.1 環境経由の暴露 .. 9
 6.4.2 消費者製品経由の暴露 .. 10
6.5 推定摂取量 .. 10

7． 環境中の生物への影響 .. 10
 7.1 水生生物に対する影響 ... 10
 7.1.1 微生物に対する毒性 .. 10
 7.1.2 細菌に対する毒性 ... 11
 7.1.3 無脊椎動物に対する毒性 .. 11
 7.1.4 魚類に対する毒性 ... 12
 7.1.5 その他の水生生物に対する毒性 .. 12
 7.2 陸生生物に対する影響 ... 12
 7.2.1 微生物に対する毒性 .. 12
 7.2.2 植物に対する毒性 ... 12
 7.2.3 動物に対する毒性 ... 12
 7.3 環境中の生物への影響（まとめ） .. 12

8． ヒト健康への影響 .. 13
 8.1 生体内運命 .. 13
 8.2 病学調査及び事例 .. 17
 8.3 実験動物に対する毒性 .. 19
 8.3.1 急性毒性 .. 19
 8.3.2 刺激性及び腐食性 .. 19
 8.3.3 感作性 .. 20
 8.3.4 反復投与毒性 .. 20
 8.3.5 生殖・発生毒性 .. 22
 8.3.6 遺伝毒性 ... 23
 8.3.7 発がん性 .. 24
 8.4 ヒト健康への影響（まとめ） .. 26

9． リスク評価 .. 27
 9.1 環境中の生物に対するリスク評価 .. 27
 9.1.1 リスク評価に用いる推定環境濃度 ... 27
9.1.2 リスク評価に用いる無影響濃度 ... 27
9.1.3 暴露マージンの算出 ... 28
9.1.4 環境中の生物に対するリスク評価結果 .. 28
9.2 ヒト健康に対するリスク評価 ... 28
 9.2.1 ヒトの推定摂取量 .. 28
 9.2.2 リスク評価に用いる無毒性量 ... 29
 9.2.3 暴露マージンの算出 ... 30
 9.2.4 ヒト健康に対するリスク評価結果 ... 31
文 献 .. 32
1. 化学物質の同定情報

1.1 物質名 ☐ クロロエタン
1.2 化学物質審査規制法官報公示整理番号 ☐ 2-53
1.3 化学物質排出把握管理促進法政令番号 ☐ 1-74
1.4 CAS登録番号 ☐ 75-00-3
1.5 構造式

\[
\begin{array}{c}
\text{H} \\
\text{C} & \text{C} & \text{Cl} \\
\text{H} & \text{H}
\end{array}
\]

1.6 分子式 ☐ C₂H₃Cl
1.7 分子量 ☐ 64.51

2. 一般情報

2.1 別名

塩化エチル

2.2 純度

99.5%以上 (一般的な製品) (化学物質評価研究機構, 2002)

2.3 不純物

無添加 (一般的な製品) (化学物質評価研究機構, 2002)

2.4 添加剤又は安定剤

不明

2.5 現在の我が国における法規制

化学物質排出把握管理促進法：第一種指定化学物質
化学物質審査規制法：指定化学物質（第二種監視化学物質）
毒薬物取締法：劇物
薬事法：薬業
労働安全衛生法：危険物可燃性のガス、名称等を通知すべき有害物、変異原性が認められた既存化学物質
船舶安全法：高圧ガス
航空法：高圧ガス
港則法：高圧ガス
高圧ガス保安法：可燃性ガス、液化ガス
3. 物理化学的性状
外観:無色気体、無色液体（液化ガス）
(U.S.NLM:HSDB, 2002)
融点:138.7 ℃
(Merck, 2001)
沸点:2.3 ℃
(Merck, 2001)
引火点:50 ℃（密閉式）
(IPCS, 2002 ; NFPA, 2002)
発火点:19 ℃
(IPCS, 2002 ; NFPA, 2002)
爆発限界:3.6～14.8 vol%（空気中）
(IPCS, 2002)
3.8～15.4 vol%（空気中）
(NFPA, 2002)
比重:0.9214（0 ℃/4 ℃）
(Merck, 2001)
蒸気密度:2.22（空気=1）
(IPCS, 2002 ; NFPA, 2002)
蒸気圧:33 kPa（20 ℃）
(IPCS, 2002)
分配係数: log Kow =1.43（測定値）
SRC:KowWin, 2002)
1.39（測定値）
(通商産業省, 1991)
1.58（推定値）
(SRC:KowWin, 2002)
解離定数:解離基なし
スペクトル:主要マススペクトルフラグメント
m/z 64（基準ピーク=1.0）、29（0.84）、49（0.25）
(NIST, 1998)
吸着性:土壌吸着係数 Koc = 24（推定値）
(SRC:PkocWin, 2002)
溶解性:氷: 6.71 g/L（25 ℃）
(SRC:PhysProp, 2002)
エーテルなどの有機溶媒:混和
(Merck, 2001)
ヘンリー定数:1.12 × 10^3 Pa·m^3/mol（0.011 atm·m^3/mol）（25 ℃、推定値）
(SRC:PhysProp, 2002)
換算係数:1 ppm = 2.68 mg/m^3、1 mg/m^3 = 0.373 ppm

4. 発生源情報
4.1 製造・輸入量等
クロロエタンの2002年度の製造・輸入量は3,076 トンと報告されている（経済産業省, 2003）。ただし、ここでの製造量は出荷量を意味し、自家消費分を含んでいない。

<table>
<thead>
<tr>
<th>年</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>3,500</td>
<td>4,200</td>
<td>4,600</td>
<td>3,900</td>
</tr>
<tr>
<td>輸入量</td>
<td>630</td>
<td>716</td>
<td>688</td>
<td>121</td>
</tr>
<tr>
<td>輸出量</td>
<td>339</td>
<td>112</td>
<td>27</td>
<td>78</td>
</tr>
<tr>
<td>国内供給量</td>
<td>3,791</td>
<td>4,804</td>
<td>5,261</td>
<td>3,943</td>
</tr>
</tbody>
</table>

(財務省, 2003；製品評価技術基盤機構, 2003)
4.2 用途情報
クロロエタンの用途及びその使用割合は表 4-2 の通りである（製品評価技術基盤機構, 2003)。
クロロエタンはエチルセルロースの合成原料やポリスチレンの発泡助剤として使用される
（製品評価技術基盤機構, 2003). また、その他にオレフィン重合触媒原料、有機金属化合物原料、
エチル化剤、農薬の中間体としての用途がある（化学工業日報, 2001)。

<table>
<thead>
<tr>
<th>用途</th>
<th>詳細</th>
<th>割合(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>合成原料</td>
<td>エチルセルロース</td>
<td>55</td>
</tr>
<tr>
<td>発泡助剤</td>
<td>ポリスチレン発泡用</td>
<td>45</td>
</tr>
<tr>
<td>合計</td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>

（製品評価技術基盤機構, 2003）

なお、冷却剤及び麻醉剤としての用途情報もあるが、現在はこれらの用途にはほとんど使用
されていない（製品評価技術基盤機構, 2003）。

4.3 排出源情報
4.3.1 化学物質排出把握管理促進法に基づく排出源
化学物質排出把握管理促進法に基づく「平成13年度排出量及び移動量並びに届出外排出
量の集計結果」（経済産業省, 環境省, 2003a)（以下、2001年度 PRTR データ）によると、クロロ
エタンは1年間に全国合計で届出事業者から大気へ1,379トン、公共用水域へ140kg排出され、
土壌へは排出されていない。また、廃棄物として320kg移動しており、下水道への移動はない。
さらに、届出外排出量としては対象業種の届出外事業者、非対象業種、家庭、移動体からの排
出量は推計されていない。

a. 届出対象業種からの排出量と移動量
2001年度 PRTR データに基づき、クロロエタンの対象業種別の環境媒体（大気、水域、土壌)への排出量と移動量を表 4-3 に整理した（経済産業省, 環境省, 2003a)。プラスチック製品製造
業からの排出が8割、化学工業からの排出は2割を占め、両業種は共に大気へ排出が主である。
また、対象業種における届出外の排出量は推計されていない。
表 4-3 クロロエタンの届出対象業種別の環境媒体への排出量等（トン/年）

<table>
<thead>
<tr>
<th>業種名</th>
<th>届出</th>
<th>移動量</th>
<th>届出外</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>排出量</td>
<td></td>
<td>排出量</td>
<td>推計</td>
</tr>
<tr>
<td></td>
<td>大気</td>
<td>水域</td>
<td>土壌</td>
<td>下水道</td>
</tr>
<tr>
<td>プラスチック製品製造業</td>
<td>1,101</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>化学工業</td>
<td>278</td>
<td><0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>合計 1)</td>
<td>1,379</td>
<td><0.5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(経済産業省, 環境省, 2003a)
1) 四捨五入のため、表記上、合計があっていない場合がある。
- 推計されていない。
0.5 トン未満の排出量及び移動量はすべて「<0.5」と表記した。

なお、2001年のクロロエタンの製造量及びその製造段階での排出原単位（日本化学工業協会, 2002）からクロロエタンの製造段階における排出量は、大気へ 192 トンと推定される。水域及び土壌への排出はないと推定される（製品評価技術基盤機構, 2004）。したがって、2001年度PRTR データに基づく届出対象業種からのクロロエタンの排出量のほとんどは、製造段階ではなく、使用段階での排出と考えられる。

b. 非対象業種、家庭及び移動体からの排出量
2001年度PRTR データでは、クロロエタンの非対象業種、家庭、移動体からの排出量は推計対象となっていない（経済産業省, 環境省, 2003b)。

4.3.2 その他の排出源
調査した範囲では、2001年度PRTR データで推計対象としている以外のクロロエタンの排出源の情報は入手できなかった。

4.4 排出経路の推定
クロロエタンは、大部分が合成原料及び発泡助剤として使用されているという用途情報及び2001年度PRTR データ等から判断して、主たる排出経路は、クロロエタンあるいはクロロエタンを含む製品を使用する段階からの排出と考えられる。
クロロエタンの放出シナリオとして、1年間に全国で、大気へ 1,379 トン、水域へ 140 kg 排出されると推定した。土壌への排出は考慮しない。ただし、廃棄物としての移動量及び下水道への移動量については、各処理施設における処理後の環境への排出を考慮していない。
5. 環境中運営
5.1 大気中での安定性
a. OH ラジカルとの反応性
対流圈大気中では、クロロエタンの OH ラジカルとの反応速度定数が 4.11 × 10^{-13} \text{cm}^3/\text{分子/秒} (25 \degree \text{C}, 測定値) である (SRC:AopWin, 2002)。OH ラジカル濃度を 5 × 10^5 〜 1 × 10^6 分子/cm^3 とした時の半減期は 20〜40 日と計算される。

b. オゾンとの反応性
クロロエタンとオゾンとの反応性については、調査した範囲内では報告されていない。

c. 硝酸ラジカルとの反応性
クロロエタンと硝酸ラジカルとの反応性については、調査した範囲内では報告されていない。

5.2 水中での安定性
5.2.1 非生物的分解性
クロロエタンには加水分解を受けやすい化学結合はないので、水環境中では加水分解されない。

5.2.2 生分解性
クロロエタンは、化学物質審査規制法に基づくクローズドボトルを用いた好気的生分解試験では、被験物質濃度 1.84 mg/L 及び 9.14 mg/L、実験期間 4 週間の条件において、生物化学的酸素消費量 (BOD) 測定での分解率は共に 1%であり、難分解性と判定されている (通商産業省, 1991)。クロロエタンは常温では無機なので、通常の生分解試験法を適用することが困難であり、生分解性に関する報告例は限られている。クロロエタンは通常実施される好気的条件での生分解試験では分解され難しいとの報告がある (Huls, 1993a)。なお、硝化菌によってクロロエタンが酸化されてアセトアルデヒドと 2-クロロエタノールを生成することが報告されており、このときの生成物のうち 98%以上をアセトアルデヒドが占めていた (Rasche et al., 1990)。アセトアルデヒドは良分解性でと判定されており (通商産業省, 1980)、これらから、クロロエタンは条件が整えば好気的環境において生分解される可能性がある。
クロロエタンは嫌気的条件においてはメタン産生菌によって還元的に脱塩素化され、エタンと塩化水素を生成することが示されており (Baek et al., 1990; Hollinger et al., 1992)、クロロエタンは嫌気的条件でも限られた条件下で生分解される可能性がある。

5.2.3 下水処理による除去
クロロエタンの下水処理による除去については、調査した範囲内では報告されていない。

5.3 環境水中での動態
ヘンリー定数を基にした水中から大気中のクロロエタンの揮散については、水深 1 m、流速 1 m/秒、風速 3 m/秒のモデル河川での半減期は 2.4 時間と推算される (Gossett, 1987; Thomas,
クロロエタンは水への溶解度は 6.71 g/L (25 ℃) だが、蒸気圧は 133 kPa (20 ℃) と大きく、ヘンリー定数も 1.12 kPa·m³/mol (25 ℃) と大きい (3 章参照)。

以上及び 5.2 から、環境中にクロロエタンが排出された場合は、主に大気中への揮散により水中から除去されると推定される。

5.4 生物濃縮性
クロロエタンについては、化学物質審査規制法に基づく濃縮性試験が実施されていない。しかし、クロロエタンのオクタノール/水分配係数 log Kow は 1.43 (3 章参照) であることから、濃縮性がない又は低いと判定されている (通商産業省、1991)。なお、生物濃縮係数 (BCF) は 7 (Bysshe, 1982; Hansch and Leo, 1985) 及び 5 (Horvath, 1982) が推算されている。

6. 暴露評価
6.1 環境中分布予測
クロロエタンが、大気、水域又は土壌のいずれかに定常的に放出されて定常状態に到達した状態での環境中での分布をフガシティモデル・レベル III (Mackay et al., 1992) によって予測した (表 6-1)。変動要因として、物理化学的性質及び環境中での移動、分解速度を考慮し、環境因子は関東地域 100 km × 100 km を想定して大気の高さ 1,000 m、土壌表面積比率 80%、土壌中平均分布の深さ 20 cm、水園表面積 20%、平均水深 10 m、底質層平均深さ 5 cm とした。環境への放出は、大気、水域及び土壌の各省に個別に放出される 3 つのシナリオを設定した (化学物質評価研究機構、2001)。
クロロエタンは、大気に放出された場合は、主として大気に分布、水域に放出された場合は、大気に約 3 割、水域に約 7 割分布する。また、土壌に放出された場合は、土壌に約 2 割、大気に約 8 割分布するものと予測される。

表 6-1 クロロエタンのフガシティモデル・レベルIIIによる環境中分布予測結果

<table>
<thead>
<tr>
<th>シナリオ</th>
<th>分布 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>大気</td>
</tr>
<tr>
<td>シナリオ 1 (大気中100%放出)</td>
<td>99.7</td>
</tr>
<tr>
<td>シナリオ 2 (水域中100%放出)</td>
<td>28.6</td>
</tr>
<tr>
<td>シナリオ 3 (土壌中100%放出)</td>
<td>83.4</td>
</tr>
</tbody>
</table>

(化学物質評価研究機構、2001)

6.2 環境中濃度
6.2.1 環境中濃度の測定結果
a. 大気中の濃度
クロロエタンの大気中濃度として、環境省による化学物質環境調査結果 (2001 年度の調査名)
を表 6-2 に整理した（環境省，2002a）。この調査は一般環境中における残留状況を把握するために行われている。2001年度の調査におけるクロロエンの大気中濃度の 95 パーセンタイルは 0.27 g/m³ であった（不検出は検出限界的 1/2 として算出）。

<table>
<thead>
<tr>
<th>年度</th>
<th>検出数/検体数</th>
<th>検出地点数/調査地点数</th>
<th>範囲（g/m³）</th>
<th>検出限界（g/m³）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>8/46</td>
<td>11/16</td>
<td>nd-53.6</td>
<td>0.016-8.0</td>
</tr>
<tr>
<td>1980</td>
<td>7/117</td>
<td>22/33</td>
<td>nd-1.61</td>
<td>0.012-8.0</td>
</tr>
<tr>
<td>1983</td>
<td>56/102</td>
<td>34/34</td>
<td>nd-2.08</td>
<td>0.029-0.08</td>
</tr>
<tr>
<td>2001</td>
<td>46/48</td>
<td>16/16</td>
<td>nd-0.54</td>
<td>0.006</td>
</tr>
</tbody>
</table>

nd: 不検出
（環境省, 2002a）

b. 公共用水域中の濃度
クロロエンの公共用水域中濃度として、環境庁において 1977 年度に一般環境における水質（検出限界 0.04 g/L、底質（検出限界 0.2 g/kg）のそれぞれ 3 検体について測定し、いずれも検出されなかった（環境庁, 1978）。

また、クロロエンの河川水中濃度として、環境庁による 1999 年度における河川水、湖沼、海域及び地下水中の濃度の測定結果（環境省, 2002b）を水域ごとに表 6-3 に示した。この調査は、環境庁が水環境中で一定の検出率を超えて検出されている物質、水環境を経由して人の健康や生態系に有害な影響を与える可能性がある物質等を調査項目に選定し、その水環境中の存在状況を全国的に調査したものである。この調査での、1999年度における河川（AA 〜 C 類型）、海域及び地下水での測定値の 95 パーセンタイルはそれぞれ 0.026 g/L、0.19 g/L 及び 0.029 g/L である。

<table>
<thead>
<tr>
<th>水域</th>
<th>検出地点数/調査地点数</th>
<th>検出範囲（g/L）</th>
<th>算術平均（g/L）</th>
<th>幾何平均（g/L）</th>
<th>95％セナタイル（g/L）</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA-C</td>
<td>41/89</td>
<td>nd-0.060</td>
<td>0.010</td>
<td>0.0082</td>
<td>0.026</td>
</tr>
<tr>
<td>D, E, 無指定</td>
<td>17/35</td>
<td>nd-0.21</td>
<td>0.019</td>
<td>0.011</td>
<td>0.043</td>
</tr>
<tr>
<td>湖沼</td>
<td>3/6</td>
<td>nd-0.010</td>
<td>0.0075</td>
<td>0.0071</td>
<td>0.010</td>
</tr>
<tr>
<td>海域</td>
<td>5/17</td>
<td>nd-0.50</td>
<td>0.042</td>
<td>0.0088</td>
<td>0.19</td>
</tr>
<tr>
<td>地下水</td>
<td>14/23</td>
<td>nd-0.03</td>
<td>0.018</td>
<td>0.010</td>
<td>0.029</td>
</tr>
</tbody>
</table>

nd: 不検出
不検出地点は検出限界的1/2の値として幾何平均及び95パーセンタイルを算出。
（環境省, 2002b）

c. 水道水中的濃度
調査した範囲において、クロロエニンの水道水中の濃度に関する測定結果は入手できなかった。
d. 食物中の濃度
調査した範囲において、クロロエタンの食物中の濃度に関する測定結果は入手できなかった。

6.2.2 環境中濃度の推定
a. メッシュ毎の排出量の推計
濃度推定に必要な大気、公共用水域及び土壌の各環境媒体のメッシュ毎の排出量を、化学物質排出把握管理促進法に基づく「平成13年度届出排出量及び移動量及び届出外排出量の集計結果」（経済産業省、環境省、2003）（以下、「2001年度PRTRデータ」という。）をもとに、推定する。
届出排出量については、事業所毎の排出量、事業所の所在地の情報をもとに、メッシュ毎に割り振った（製品評価技術基盤機構，2004）。
クロロエタンの全国における環境媒体別排出量を表6-4に整理した（製品評価技術基盤機構，2004）。

<table>
<thead>
<tr>
<th>表6-4 クロロエタンの全国における環境媒体別排出量 （トン/年）</th>
</tr>
</thead>
<tbody>
<tr>
<td>排出区分</td>
</tr>
<tr>
<td>届出</td>
</tr>
</tbody>
</table>

（経済産業省、環境省、2003a）
0.5トン未満の排出量及び移動量は「<0.5」と表記した。

b. 大気中濃度の推定
6.2.2 aの方法で推定したメッシュ毎の大気への排出量、物理化学的性状及び2001年の気象データをもとに、AIST-ADMER ver.1.0（産業技術総合研究所、2003；東野ら、2003）を用いて、5kmメッシュ毎の年間平均の大気中濃度を推定する。推定する大気中濃度は、全国各地域（北海道、東北、北陸、関東、中部、東海、近畿、中国、四国、九州、冲縄）のうち、大気への排出密度（2001年度PRTRデータから求めた地域別の大気への排出量/当該地域面積）が最も高い地域の濃度とする。クロロエタンの地域別の大気への排出量及び排出密度を表6-5に示した。クロロエタンは、東海地域における大気への排出密度が最も大きいため、この地域における大気中濃度を推定した。
推定の結果、東海地域における大気中濃度の年間平均の最大値は、5.7 g/m³であった（製品評価技術基盤機構，2004）。
表 6-5 クロロエタンの地域別大気への排出量及び排出密度

<table>
<thead>
<tr>
<th>地域名</th>
<th>大気への排出量合計(トン/年)</th>
<th>地域面積 (km²)</th>
<th>大気への排出密度 (トン/km²/年)</th>
<th>排出密度順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>140</td>
<td>83,500</td>
<td>0.00168</td>
<td>4</td>
</tr>
<tr>
<td>東北</td>
<td>0</td>
<td>64,000</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>北陸</td>
<td>7</td>
<td>17,900</td>
<td>0.000391</td>
<td>6</td>
</tr>
<tr>
<td>関東</td>
<td>455</td>
<td>32,100</td>
<td>0.0141</td>
<td>2</td>
</tr>
<tr>
<td>中部</td>
<td>0</td>
<td>31,200</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>東海</td>
<td>340</td>
<td>18,200</td>
<td>0.0187</td>
<td>1</td>
</tr>
<tr>
<td>近畿</td>
<td>9.8</td>
<td>27,200</td>
<td>0.00036</td>
<td>7</td>
</tr>
<tr>
<td>中国</td>
<td>410</td>
<td>31,800</td>
<td>0.0129</td>
<td>3</td>
</tr>
<tr>
<td>四国</td>
<td>19.3</td>
<td>18,800</td>
<td>0.00103</td>
<td>5</td>
</tr>
<tr>
<td>九州</td>
<td>0</td>
<td>39,900</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>沖縄</td>
<td>0</td>
<td>2,270</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>全国</td>
<td>1380</td>
<td>378,000</td>
<td>0.00365</td>
<td></td>
</tr>
</tbody>
</table>

1) 全国の面積には都県にまたがる境界未定地域を含む。
 太字は大気中濃度を推定した地域を示す。

c. 河川水中濃度の推定
 クロロエタンは2001年度PRTRデータによると、河川への排出がないので、モデルによる河川
 水中濃度の推定は行わない (製品評価技術基盤機構, 2004)。本評価書では大気、土塚から河川
 への移動は考慮していない。

6.3 水生生物生息環境における推定環境濃度
 水生生物が生息する環境の推定環境濃度 (EEC) を、6.2.1 b 及び 6.2.2 c の公共用水域中の濃
 度から求める。
 クロロエタンの公共用水域中の濃度としては、環境庁による 1999 年度の利水目的類型 AA
 ーC の水質基準点の測定結果 (表 6-3 参照) の 95 パーセンタイル 0.026 μg/L がある。また、
2001 年度 PRTR データによるモデルを用いた河川水中濃度の推定は、水域への排出はすべて海
域であることから、実施していない。
 そこで本評価書では、測定地点が多く、調査年度も新しかることから、環境庁による調査結果
から算出した AAーC 類型河川の 95 パーセンタイルである 0.026 μg/L が EEC として適切であ
ると判断した。

6.4 ヒトへの暴露シナリオ
6.4.1 環境経由の暴露
 クロロエタンの環境経由によるヒトへの暴露経路としては、主として呼吸からの吸入暴露と
飲料水及び食物からの経口が考えられる。食物中の濃度に関する測定結果は入手できなかった
ため、ここでは食物として魚類のみを考慮する。
6.4.2 消費者製品経由の暴露

入手した用途情報から、クロロエタンの消費者製品からの暴露はないと考えられるので、本評価書においては、考慮しない。

6.5 推定摂取量

本評価書においては各経路からの摂取量を推定する際、成人の空気吸入量を 20 m³/人/日、飲料水摂取量を 2 L/人/日、魚類摂食量を 0.12 kg/人/日と仮定した。

推定摂取量の算出は、以下の仮定に従って求めた。

大気中濃度は、環境省による 2001 年度の測定値があり、95 パーセンタイルは 0.27 g/m³ であった。また、AIST-ADMER による関東地域における大気中濃度の推定年間平均の最大値は 5.7 g/m³ であった。ここでは環境省による 2001 年度の調査が、年度が新しく、測定地点数も多いことから、この測定結果から算出した 95 パーセンタイルの 0.27 g/m³ を用いる。

飲料水は水道水を摂取するものと仮定する。クロロエタンの水道水（浄水）中の濃度については、その測定データを入手できなかったが、水道水中的濃度は地下水水中濃度を超えることはないと判断し、水道水中濃度を地下水と同等と考え、環境庁による 1999 年度の調査における地下水中の濃度の 95 パーセンタイルである 0.029 g/L を用いた。

魚体内濃度は調査した範囲では実測結果が入手できなかったので、海域（内湾）に生息している魚の体内に濃縮されることを想定して推定する。推定には内湾の濃度として環境庁による 1999 年度の調査の海域における 95 パーセンタイルである 0.19 g/L を採用し、生物濃縮係数としては 7 を用いる (5.4 項参照)。

これらの仮定のもとに推定したヒトでの摂取量は、以下のとおりである。

大気からの摂取量：0.27 (g/m³) × 20 (m³/人/日) = 5.4 (g/人/日)

飲料水からの摂取量：0.029 (g/L) × 2 (L/人/日) = 0.058 (g/人/日)

魚類からの摂取量：0.19 (g/L) × 7 (L/kg) × 0.12 (kg/人/日) = 0.16 (g/人/日)

成人の体重を平均 50kg と仮定して、体重 1 kg あたりの摂取量を求めるとき次のようなになる。

吸入摂取量：5.4 (g/人/日) / 50 (kg/人) = 0.11 (g/kg/日)

経口摂取量：(0.058 + 0.16) (g/人/日) / 50 (kg/人) = 0.0044 (g/kg/日)

合計摂取量：0.11 + 0.0044 = 0.11 (g/kg/日)

7. 環境中の生物への影響
7.1 水生生物に対する影響
7.1.1 微生物に対する毒性

クロロエタンの微生物に対する毒性試験結果を表 7-1に示す。

ドイツ標準試験法 (DIN 38412) によるシュードモナスの酸素消費を指標とした 17 時間 EC10 は 140 mg/L 超であった (Huls, 1996)。
表 7-1 クロロエタンの微生物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験条件</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas putida (シュードモネサ)</td>
<td>21日</td>
<td>17時間 EC10 酸素消費</td>
<td>> 140</td>
<td>Huls, 1996</td>
</tr>
<tr>
<td>Nitrosomonas europaea (アンモニア酸化細菌)</td>
<td>ND</td>
<td>EC75 硝化作用阻止</td>
<td>231</td>
<td>Rasche et al., 1990</td>
</tr>
</tbody>
</table>

ND: データなし

7.1.2 藻類に対する毒性
クロロエタンの藻類に対する毒性試験結果を表 7-2に示す。
藻類に対する試験データは淡水緑藻であるセネデスマスの1件のみが報告されている。原著は入手できないが、BUA レポート（GDCh BUA, 1998）に詳細な記述がある。
EU のテストガイドラインに準じて実施されたこの試験は、クロロエタンの揮発性を考慮したものである。影響濃度の算出には試験開始時と終了時の測定濃度の幾何平均値を用いている。その結果、バイオマス及び生長速度により算出した 72 時間 EC50 はそれぞれ 39 及び 118 mg/L、また、EC10 はそれぞれ 2.7 及び 9.4 mg/L であった (GDChBUA, 1998; Huls, 1993b)。

表 7-2 クロロエタンの藻類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度 (℃)</th>
<th>エンドポイント</th>
<th>影響指標</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scenedesmus subspicatus (緑藻、セデスマス)</td>
<td>EU1)</td>
<td>24±2</td>
<td>72時間 EC50</td>
<td>生長速度</td>
<td>39</td>
<td>Huls, 1993b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>生長速度</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72時間 EC10</td>
<td>バイオマス</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>生長速度</td>
<td>9.4</td>
<td></td>
</tr>
</tbody>
</table>

(m): 測定濃度、閉鎖系: 試験容器や水槽にフタ等をしているが、ヘッドスペースはある状態
1) 欧州連合テストガイドライン

(太字はリスク評価に用いたデータを示す)

7.1.3 無脊椎動物に対する毒性
クロロエタンの無脊椎動物に対する毒性試験結果を表 7-3に示す。
クロロエタンはその高い揮発性から、報告されている無脊椎動物に対する試験データは甲殻類であるオオミジンコの1件のみである。原著は入手できないが、BUA レポート（GDCh BUA, 1998）に詳細な記述がある。
EU のテストガイドラインに準じて実施されたこの試験は、クロロエタンの揮発性を考慮したものである。試験設定濃度は 6〜217 mg/L であったが、試験終了の実測濃度はそれより 30 〜50％も低下した。従って、結果の算出には試験開始時と終了時の測定濃度の幾何平均値を用いた結果、遊泳阻害を指標とした 24 時間 EC50 は 91 mg/L、48 時間 EC50 は 58 mg/L であった (Huls, 1993c)。
表 7-3 クロロエタンの無脊椎動物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方程式</th>
<th>温度 (℃)</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna (甲殻類、オオミシジム)</td>
<td>生後 24時間以内</td>
<td>EU¹)止水閉鎖系</td>
<td>19-21</td>
<td>ND</td>
<td>ND</td>
<td>24時間 EC₅₀</td>
<td>91 (m)</td>
<td>Huls, 1993c</td>
</tr>
</tbody>
</table>

ND: データなし (m): 測定濃度、閉鎖系: 試験容器や水槽にフタ等をしているが、ヘッドスペースはある
1) 欧州連合テストガイドライン
太字はリスク評価に用いたデータを示す

7.1.4 魚類に対する毒性
調査した範囲内では、クロロエタンの魚類に関する試験報告は得られていない。

7.1.5 その他の水生生物に対する毒性
調査した範囲内では、クロロエタンのその他の水生生物（両生類等）に関する試験報告は得られていない。

7.2 陸生生物に対する影響
7.2.1 微生物に対する毒性
調査した範囲内では、クロロエタンの陸生微生物（土壌中の細菌や菌類）に関する試験報告は得られていない。

7.2.2 植物に対する毒性
出芽したカラスムギとコショウソウの実生をクロロエタン 26.8 及び 268 mg/L の濃度で 14日間ガス暴露して地上部の重篤変化を調べた。カラスムギではいずれの濃度においても影響は認められなかったが、コショウソウでは 268 mg/L で約 20%重量が減少した (Huls, 1995)。

7.2.3 動物に対する毒性
調査した範囲内では、クロロエタンの陸生動物に関する試験報告は得られていない。

7.3 環境中の生物への影響（まとめ）
クロロエタンの環境中の生物に対する影響については、その物理化学的な性状（常温で気体）のため試験実施が困難であり、報告されている毒性データは非常に少ない。EU のテストガイドラインやドイツ標準試験法に準じた試験は、その挙発性を考慮しており、信頼性は高いと考えられる。
微生物に関して信頼性のある毒性は、シュードモナスの酸素消費を指標とした 17 時間 EC₁₀ の 140 mg/L 超であった。
藻類は淡水緑藻のセネデスムスのバイオマス及び生長速度により算出した 72 時間 EC50 はそれぞれ 39 及び 118 mg/L であり、バイオマス算出値は GHS 急性毒性有害性区分 III に相当し、有害性を示す。また、72 時間 EC10 は 2.7 mg/L (バイオマス) と 9.4 mg/L (生長速度) であった。

無脊椎動物は甲殻類のオオミジンコの急性毒性データがあり、それら急性毒性値 (58〜91 mg/L) は、GHS 急性毒性有害性区分 III に相当し、有害性を示す。

調査した範囲内では、淡水魚類と海産生物に対する急性毒性及び水生生物に対する長期試験に関する報告は得られなかった。

陸生生物に関しては、カリスムギとコショウソウの苗木でのガス暴露による地上部の重量変化を調べた報告があり、カリスムギでは 268 mg/L で影響はなかったが、コショウソウでは同じ濃度で重量が 20%低下した。

以上から、クロロエタンの水生生物に対する急性毒性は、藻類及び甲殻類に対して GHS 急性毒性有害性区分 III に相当し、有害性を示す。

得られた毒性データのうち水生生物に対する最小値は、藻類であるセネデスムスの生長障害を指標とした 72 時間 EC10 の 2.7 mg/L (バイオマス) である。

8. ヒト健康への影響
8.1 生体内運命
クロロエタンに対する生体内運命を表 8-1に示す。

a. 吸収
クロロエタンはヒト、動物において肺及び皮膚から容易に吸収される (Konietzko, 1984; Lehmann and Flury, 1943; Torkelson and Rowe, 1981)。ヒトに 5 mg の 36Cl-クロロエタンを 30 秒間吸入させ、30秒間気を止めた実験で、約 18%が最初の 2 回の呼気中に検出されたことから、約 82%が吸収されたことが示唆されている (Morgan et al., 1970)。

b. 分布
in vitro で 40 日の条件におけるクロロエタンのヒトの血液/空気及び血清/空気の分配係数は、それぞれ 1.9 及び 1.2 であった (Morgan et al., 1970)。同じく in vitro で 37 日ではクロロエタンのヒト血液/空気の分配係数は 2.69 ± 0.2 であった (Gargas et al., 1989)。血液中では、および 75% のクロロエタンが赤血球に結合し、25%が血漿に移行している (Konietzko, 1984)。一方、クロロエタンのラットの組織/空気の分配係数は、脂肪組織/血液、肝臓、筋肉でそれぞれ 38.6、4.08、3.61 及び 3.22 の、クロロエタンは血液、肝臓、筋肉よりも脂肪に高い親和性がある (Gargas et al, 1989)。動物の体で最も濃度のクロロエタンがみられるのは腎臓周囲の脂肪組織で、最も低濃度は脳脊髄液である (Konietzko, 1984)。これに対し、Lehmann and Flury (1943) は脳と延髄のクロロエタン含量が高いた報告している。
クロロエタンは物理化学的性状から胎盤を通じると考えられるが信頼性のある証拠はない (Guzerian et al., 1992)。一方、クロロエタンは母乳に分布すると報告されているが、母乳中のクロロエタンの濃度は測定されておらず、調査した女性の例数も少なく、乳児に及ぼす影響を推
定することは困難とされている (Pellizari et al., 1982)。

c. 代謝

マウス及びラットにおけるクロロエタンの代謝経路を図 8-1に示す。

主な代謝経路は、シトクロム P450 によるアセトアルデヒドの産生経路と、グルタチオンと抱合して S-エチルグルタチオンを形成する経路の二つである。すなわち、36Cl で標識したクロロエタンを用いてラットの肝ミクロソームによる脱塩素反応を in vitro で調べた実験では、NADPH 依存性の脱塩素反応は比較的活性が低く、投与量の 0.5%未満が脱塩素化されたに過ぎないが、NADP/NADPH 非存在下では著しい脱塩素反応がみられた (Van Dyke and Wineman, 1971)。特異的な P450 酵素の誘導剤と阻害剤を使った研究では、P450 酵素である DE1 (CYP2E1) がクロロエタンの酸化的代謝に主に関与していると報告されている (Koop, 1990; Vieira et al., 1996)。クロロエタンのアセトアルデヒドへの代謝は、クロロエタン 15,000 ppm を 6 時間/日を 5 日間吸入暴露したマウス及びラットの肝臓を用いて in vitro で実験された。アセトアルデヒドの生成量は、マウス及びラットで代謝されたクロロエタンの 26.9〜49.3%の範囲に及んでいた (Fedtke et al., 1994a)。生成したアセトアルデヒドはアルデヒド脱水素酵素により速やかに酢酸に代謝される。マウスのクロロエタンの代謝速度はラットの 3 倍であるが、それ以外はマウス及びラットの間で代謝の違いはみられていない (ATSDR, 1998)。

一方、抱合経路については、クロロエタンはグルタチオン-S-転移酵素によりグルタチオンと抱合して S-エチルグルタチオンを形成する。さらに、S-エチルグルタチオンは S-エチル-L-システインに、次いで S-エチル-L-システインは N-アセチル化を受け、相当するメルカプトツール酸 (S-エチル-L-アセチル-L-システイン) に代謝される。ラットにおいてはメルカプトツール酸への代謝は非常に速いので、尿中にはメルカプトツール酸のみが検出されるが、マウスでは遅いので、メルカプトツール酸と同時に S-エチル-L-システインも尿中に検出される (GDCh BUA, 1998)。

マウス及びラットの肝臓の細胞質ソルを用いた in vitro の実験で、クロロエタンのグルタチオンとの抱合は、グルタチオン-S-転移酵素によって触媒されることが示された (Fedtke et al., 1994b)。クロロエタンはグルタチオン抱合の後、3 種類の酵素、□-グルタミルトランスペプチダーゼ、システイニルグリシンーゼ及び N-アセチル転移酵素 (NAT1, NAT2) によってもっと親水性の高いメルカプトツール酸に変換される (Amud et al., 1991)。マウス及びラットを用いた実験で、グルタチオン抱合の速度はラットよりマウスが 5〜6 倍速かった (Amud et al., 1991)。

器官中のグルタチオン濃度について、マウス及びラットにクロロエタン 15,000 ppm (40,200 mg/m³ 相当) を 6 時間/日を 5 日間吸入暴露し、暴露直後に種々の器官中のグルタチオン濃度を調べた実験で、雄ラットの肝臓、雌ラットの腎臓、雌雄のラット及びマウスの肺、ラット及びマウスの子宮のグルタチオン濃度に有意に減少した。グルタチオン濃度の減少が最も著しかったのは子宮で、対照群の約 2/3 まで減少した (Fedtke et al., 1994b)。

マウスに 4,000 ppm (10,700 mg/m³ 相当)、ラットに 1,600, 4,000, 10,000 ppm (4,300, 10,700, 26,800 mg/m³) を 6 時間吸入暴露した実験で、暴露終了 30 分後の肝臓中のグルタチオン濃度が、4,000 ppm 暴露のマウス及びラットで、それぞれ暴露前の 64%及び 88%に低下したことから、本反応は、グルタチオン-S-転移酵素によって触媒されるグルタチオンの消費を伴う反応であり、生成物は S-エチルグルタチオンであると考えられている (Landry et al., 1982)。
クロロエタンの主な代謝経路 (ATSDR, 1998を改変)

d. 排泄

クロロエタンはヒト、動物とも大部分が肺を介して呼気中に速やかに排泄される (Adriani, 1986; Konietzko, 1984; Lehmann and Flury, 1943; Torkelson and Rowe, 1981)。

ヒトに短時間吸入暴露した実験では、摂取されたクロロエタンの 30%が 1 時間以内に呼気中に排泄されたが、尿中への排泄は非常に遅かった (0.01%/分未満) (Morgan et al., 1970)。Pottinger らは、クロロエタン濃度が高い場合ではマウスは主にグルタチオン抱合経路により代謝し、排泄するのに対し、ラットでは未変化体を呼気中に放出する経路が主な排泄経路であると報告している (Pottinger et al., 1991, 1992)。

クロロエタンに暴露されたマウスの尿中にはアセトアルデヒドが少量検出されるが、ラットでは検出されなかった (Fedtke et al., 1994a)。雌雄マウスの尿中のアセトアルデヒド濃度は、対照群のマウスでそれぞれ 7.9～20.3 及び 0～18.1 μmol/L、クロロエタン暴露マウスでそれぞれ 15.4～70.1 及び 11.6～17 μmol/L であった。また、グルタチオン抱合体もクロロエタンに暴露されたラット及びマウスの尿中に検出された (Fedtke et al., 1994b)。ラットは親水性の高い S-エチル-N-アセチル-L-システインを、一方、マウスは S-エチル-N-アセチル-L-システイン及び S-エチル-L-システインの両方を排泄した。マウス及びラットにクロロエタン 15,000 ppm (40,200 mg/m 3 相当) を 6 時間/日で 5 日間吸入暴露した実験で、尿中に排泄されたグルタチオン代謝物の総量は、ラットよりマウスで約 5 倍多かったと報告されている (ATSDR, 1998)。

以上、クロロエタンの代謝、排泄に関し、酸化経路、抱合経路、未変化体呼出の 3 経路の量的関係を整理すると、摂取されたクロロエタンは、ヒト、動物ともかなりの量が未変化体として呼気中に排泄されており、ヒトでは 1 時間以内に摂取量の 30%が呼気から排泄されている。
高濃度暴露では、ラットの主要な排泄経路は呼気で、マウスでは抱合経路が主要な排泄経路になっている。一方、酸化経路による代謝では、マウス及びラットの肝臓を用いた実験で、アセトアルデヒドの生成量は、クロロエタン代謝物の26.9〜49.3%を占めており、マウスではラットの3倍生成している。

表 8-1 クロロエタンの生体内運命

<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ヒト</td>
<td>吸入暴露 (36Cl-クロロエタン)</td>
<td>5 mg 30秒吸入後 30秒休息</td>
<td>吸収: 約18%が最初の2回の呼気中に検出、約82%が吸収されたことを示唆。分布: 40%条件下での分配係数: 血液/空気 1.9 血清/空気 1.2 排泄: 吸収されたクロロエタンの30%が1時間以内に呼気中に排泄、尿中へ非常に遅い排泄 (0.01%/分未満)。</td>
<td>Morgan et al., 1970</td>
</tr>
<tr>
<td>ヒト</td>
<td>ND</td>
<td>ND</td>
<td>37%条件下での分配係数: 血液/空気 2.69 ± 0.2</td>
<td>Gargas et al., 1989</td>
</tr>
<tr>
<td>ヒト</td>
<td>ND</td>
<td>ND</td>
<td>分布: 血液中のクロロエタン分布割合 血漿 25% 赤血球内 75%</td>
<td>Konietzko, 1984</td>
</tr>
</tbody>
</table>
| ラット | ND | ND | 分布: クロロエタンの組織/空気の分配係数は、脂肪組織、血液、肝臓、筋肉でそれぞれ38.6 ± 0.7、4.08 ± 0.39、3.61 ± 0.32及び3.22 ± 0.68。
クロロエタンは血液、肝臓、筋肉よりも脂肪に高い親和性。 | Gargas et al., 1989 |
| ND | ND | ND | 分布: クロロエタンの組織内濃度 最高濃度組織 腎臓周囲の脂肪組織 最低濃度 腦脊髄液 | Konietzko, 1984 |
| ND | ND | ND | 分布: クロロエタンの組織含量: 脳、延髄では高濃度含有 | Lehmann & Flurry, 1943 |
| ND | ND | ND | 分布: 物理化学的性状から、クロロエタンの胎盤通過の可能性はないと推測 | Guzerian et al., 1992 |
| ヒト 女性 | ND | ND | 分布: クロロエタンは母乳に分布と報告 | Pellizari et al., 1982 |
| マウス、ラット | 吸入暴露 | 0、15,000 ppm 6時間/日、5日間 (0、40,200 mg/m³ | 代謝: 振出肝臓を用いた in vitro 実験で、アセトアルデヒドの生成量は、ラット及びマウスでそれぞれ代謝されたクロロエタンの26.9〜49.3%。
排泄: マウスの尿中にアセトアルデヒドを検出、ラットでは検出なし。 | Fedtke et al., 1994a |
| マウス、ラット | 吸入暴露 | 5日間 | 代謝: グルタチオン抱合速度はラットよりマウスが5〜6倍。尿分析でラット及びマウスでS-エチル-N-アセチル-L-システィンが、マウスでS-エチル-L-システィンが検出。
著者は、ラットは尿中に排泄する前にS-エチル-L-システィンをもっと親和性の高い代謝物に完全に代謝すると結論。 | Amdur et al., 1991 |
| マウス、ラット | 吸入暴露 | 0、15,000 ppm 6時間/日、5日間 (0、40,200 mg/m³) | 代謝: 暴露直後、雄ラットの肝臓、雌ラットの腎臓、雌雄のラット及びマウスの肺、issent及びマウスの子宮のグルタチオン濃度が有意に減少。
グルタチオン濃度の減少が最も著しかったのは子宮で、照群の約2/3まで減少。
排泄: 雌雄マウスの尿中のアセトアルデヒド濃度 | Fedtke et al., 1994b |
<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与条件</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス</td>
<td>吸入暴露</td>
<td>0, 4,000 ppm (0, 10,700 mg/m³相当), 6時間</td>
<td>代謝:暴露終了30分後の肝臓中のグルタチオン濃度は、4,000 ppmで64%に低下。</td>
<td>Landry et al., 1982</td>
</tr>
<tr>
<td>ラット</td>
<td>吸入暴露</td>
<td>0, 1,600, 4,000, 10,000 ppm (0, 4,300, 10,700, 26,800 mg/m³), 6時間</td>
<td>代謝:暴露終了30分後の肝臓中のグルタチオン濃度は、4,000 ppmで88%に低下。</td>
<td>Landry et al., 1982</td>
</tr>
<tr>
<td>マウス、ラット</td>
<td>吸入暴露</td>
<td>15,000 ppm 6時間/日, 5日間 (40,200 mg/m³)</td>
<td>排泄:尿中に排泄されたグルタチオン代謝物の総量は、ラットよりもマウスで約5倍大。</td>
<td>ATSDR, 1998</td>
</tr>
</tbody>
</table>

ND: データなし

8.2 疫学調査及び事例
クロロエタンのヒトに対する疫学調査及び事例を表8-2に示す。

a. 急性影響
クロロエタンは麻酔事故による死亡例が報告されている (Konietzko, 1984; Kuschinsky, 1970; Lawson, 1965; Lehmann and Flury, 1943)。麻酔死の原因は呼吸麻痺 (Kuschinsky, 1970) や心障害 (Lehmann and Flury, 1943) に起因すると報告されている。

クロロエタンの主な有効作用は麻酔作用に伴う神経系への影響であり、吸入により無痛感、めまい、嘔吐など中枢神経系への影響が報告されている (Davidson, 1925; Hes et al., 1979; Nordin et al., 1988)。

クロロエタンを局所麻酔の目的で上腕に20 cmの高さから10秒間噴霧した際、軽度の痛みを生じると報告されており (Selby and Bowles, 1995)、皮膚に噴霧した場合には速やかに蒸発し皮膚の痛れや凍傷を引き起こす場合もある (Ott, 1969)。クロロエタン40,000 ppm (107,200 mg/m³相当) の短期暴露は軽度の眼刺激性を示すことが報告されている (Sayers et al., 1929)。また、クロロエタンは皮膚感作性を有する可能性が示唆されている (Van Ketel, 1976)。

クロロエタンの心臓に対する影響も報告されており、心毒性はアドレナリンに対する伝導系の感受性亢進に起因し、不整脈、期外収縮、心室細動が心収縮不全に先立って観察されると報告されている (Bush et al., 1952; Efskind, 1928; Henderson, 1930; Morris et al., 1953; Schott, 1920)。

b. 慢性影響
クロロエタンを慢性的に吸収 (濫用) した9人の例 (200〜300 mL/日で4か月) において肝臓の肥大と一過性の肝機能障害がみられている (Hes et al., 1979)。
クロロエタンを濫用した例が報告されており、見当識障害、幻覚などの症状がみられている (Nordin et al., 1988)。
<table>
<thead>
<tr>
<th>対象集団</th>
<th>性別・人数</th>
<th>暴露状況</th>
<th>暴露量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>麻酔患者</td>
<td>麻酔</td>
<td>ND</td>
<td>死亡</td>
<td>麻酔死の原因は心障害と診断報告</td>
<td>Lehmann & Flurry, 1943</td>
</tr>
<tr>
<td>14歳、少年</td>
<td>麻酔</td>
<td>ND</td>
<td>死亡</td>
<td>麻酔死の原因は呼吸困難と診断報告</td>
<td>Kuschinsky, 1970</td>
</tr>
<tr>
<td>女性</td>
<td>40人</td>
<td>クロロエタンを局所麻酔の目的で上腕の一部に20cmの高さから10秒間噴露</td>
<td>ND</td>
<td>軽度の痛みを発症</td>
<td>Selby & Bowles, 1995</td>
</tr>
<tr>
<td>ボランティア</td>
<td>ND</td>
<td>20,000、40,000 ppm短時間 (53,600、107,200 mg/m³相当)</td>
<td>20,000 ppmでは刺激性なし 40,000 ppmでは眼に軽度の刺激性</td>
<td>Sayers et al., 1929</td>
<td></td>
</tr>
<tr>
<td>ボランティア</td>
<td>ND</td>
<td>20,000 ppm 2-4 呼吸 (53,600 mg/m³相当)</td>
<td>軽度の腹部痙攣、顕著な眩暈を発症</td>
<td>Sayers et al., 1929</td>
<td></td>
</tr>
<tr>
<td>湿疹を呈する患者2名及びクロロエタンの局部麻酔により湿疹を生じた患者1名</td>
<td>ヒトパッチテスト</td>
<td>ND</td>
<td>クロロエタンに対し陽性。15人のボランティアからなる対照群では陰性。</td>
<td>Van Ketel, 1976</td>
<td></td>
</tr>
<tr>
<td>クロロエタンのパッチテストで陽性となった女性1名</td>
<td>生検及び組織検査</td>
<td>ND</td>
<td>著しいSpongiosisとリンパ球浸潤、浸潤リンパ球では細胞障害性T細胞が主体。また、多くの細胞はLFA抗原を発現、CD1陽性ラングハンス細胞が多数存在。</td>
<td>Bircher et al., 1994</td>
<td></td>
</tr>
<tr>
<td>麻酔患者</td>
<td>ND</td>
<td>13,000-33,600 ppm、最大22分 (34,840-90,048 mg/m³相当)</td>
<td>13,000 ppm、12分から中毒の自覚症状 19,000 ppm、1分で軽度の中毒症状 19,000 ppm、12分で軽度の麻酔作用 25,000 ppm、15分で軽度の反射運動失調 33,600 ppm、8.5分では著しい反射運動失調、麻酔から覚醒する過程で恶心、吐き気。</td>
<td>Davidson, 1925</td>
<td></td>
</tr>
<tr>
<td>ヒト (子供)</td>
<td>ND</td>
<td>ND</td>
<td>高濃度のクロロエタンに短期間暴露された場合、迷走神経刺激に続く心機能の低下と報告</td>
<td>Bush et al., 1952</td>
<td></td>
</tr>
<tr>
<td>ヒト</td>
<td>詳細不明</td>
<td>ND</td>
<td>20,000 ppm (53,600 mg/m³相当)</td>
<td>麻酔の導入・維持には20,000 ppmが必要。</td>
<td>Cole, 1956</td>
</tr>
<tr>
<td>女性を含む9人の濫用者</td>
<td>慢的に吸引 （濫用）</td>
<td>200-300mL/日、4か月</td>
<td>神経学的検査： 運動障害、眼振、吃音、腕の拮抗運動反復不全、下肢の反射緩慢、 他に小脳障害が示唆されたが、1か月の断薬により回復。 臨床検査： 肝機能の肥大と一過性の肝機能障害。</td>
<td>Hes et al., 1979</td>
<td></td>
</tr>
<tr>
<td>労働者、25人</td>
<td>職場暴露</td>
<td>暴露濃度不詳</td>
<td>白血球貧血の低下</td>
<td>Troshina,</td>
<td></td>
</tr>
</tbody>
</table>

表 8-2 クロロエタンの疫学調査及び事例
<table>
<thead>
<tr>
<th>対象集団</th>
<th>暴露状況</th>
<th>暴露量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>性別・人数</td>
<td>明、クロロエタンの蒸気に1.5-3年</td>
<td></td>
<td></td>
<td>1966</td>
</tr>
<tr>
<td>ヒト</td>
<td>濫用</td>
<td>濫用休止期間中：てんかん発作、運動失調、歩行困難、聴覚障害、</td>
<td></td>
<td>Nordin et al., 1988</td>
</tr>
<tr>
<td>男性</td>
<td>30年間濫用</td>
<td>短期記憶障害、幻覚</td>
<td></td>
<td></td>
</tr>
<tr>
<td>入院前の4か月間は少なくとも100ml/日に濫用</td>
<td>著者はこれらの症状がクロロエタンによる神経症状か、あるいは禁断症状によるものかを断定することは困難と考察。</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: データなし

8.3 実験動物に対する毒性

8.3.1 急性毒性

クロロエタンの実験動物に対する急性毒性試験結果を表8-3に示す。調査した範囲内では、吸入毒性のLD₅₀は報告されているが、経口及び経皮暴露によるデータはない (Izmerov et al., 1982；Troshina, 1964, 1966)。

マウス及びラットでの主な症状として興奮、けいれん、瞳孔がみられ、病理組織学的検査では突発性の細胞の変性、循環障害がみられる (Troshina, 1966)。

マウスの吸入暴露による主な症状として肝のATP/ADP比の増加、非タンパク性スルフヒドリルの低値がみられ (Landry et al., 1982; Oura et al., 1996)、また、ラットの吸入暴露による主な症状として、気管支拡張、間質性肺炎、肝障害の非タンパク性スルフヒドリルの低値がみられている (Gohlke and Schmidt 1972; Landry et al., 1982)。モルモットの吸入暴露による主な症状は不眠、運動低下、肺のうっ血、出血、水腫、心筋変性、肝臓及び腎臓の退色、うっ血、変性、腸管のうっ血、死亡がみられている (Sayers et al., 1929)。

また、イヌの吸入暴露で主な症状は迷走神経の刺激による心臓の頻脈及び収縮不全、骨格筋の収縮、振戦がみられている (Bush et al., 1952; Haid et al., 1954; Morris et al., 1953)。

表8-3 クロロエタンの急性毒性試験結果

<table>
<thead>
<tr>
<th>暴露方法</th>
<th>マウス</th>
<th>ラット</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口LD₅₀ (mg/kg)</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>吸入LC₅₀ (ppm)</td>
<td>54,478 - 60,632 (2時間) (146,000 - 162,494 mg/m³相当)</td>
<td>57,600 - 60,632 (2時間) (154,368 - 162,494 mg/m³相当)</td>
</tr>
<tr>
<td>経皮LD₅₀ (mg/kg)</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

ND: データなし

8.3.2 刺激性及び腐食性

調査した範囲内では、実験動物に対するクロロエタンの刺激性及び腐食性試験に関する報告はない。
8.3.3 感作性
調査した範囲内では、実験動物に対するクロロエタンの感作性試験に関する報告はない。

8.3.4 反復投与毒性
クロロエタンの実験動物に対する反復投与毒性試験結果を表8-4に示す。

B6C3F1マウスにクロロエタン0、250、1,250、5,000 ppm (0、670、3,350、13,400 mg/m³) を
23時間/日、11日間吸入暴露した試験で、5,000 ppmで肝臓重量の増加、肝細胞の空胞の増加（グリコーゲン又は脂肪）がみられた（Landry, 1989）。

マウスにクロロエタン4,843 ppm (12,979 mg/m³) を23時間/日、11日間吸入暴露した試験では、生殖器の組織学的変化はみられていない（Landry et al., 1987; 1989）。

雌のマウスにクロロエタン15,000 ppmを6時間/日、21日間吸入暴露した試験で、性周期の延長がみられたが、血清エストラジオールやプロゲステロンの有意な変化はみられなかった（Bucher et al, 1995）。

雌雄B6C3F1マウス（1群10匹）にクロロエタン0、2,500、5,000、10,000、19,000 ppmを6
時間/日、5日/週、13週間吸入暴露した試験で、19,000 ppm群に肝臓の相対重量の増加（雌）、
鼻腔出血（雄3/10匹、雌6/10匹）がみられたが、肝臓、鼻腔粘膜に病理組織学的変化はみられ
なかった（U.S. NTP, 1989）。

雌雄B6C3F1マウス（1群50匹）にクロロエタン0、15,000 ppm (0、40,200 mg/m³) を6時間/
日、5日/週、100週間吸入暴露した発がん性試験で、雌15,000 ppmで自発運動亢進、腎臓の尿
細管上皮の再生性変化、微小な系球体硬化症がみられた。また雌で死亡率の増加がみられたが、
これは誘発された子宮の腫瘍に起因すると考えられた（U.S. NTP, 1989）。

雄のラットにクロロエタン436 ppmを8日間吸入暴露した試験で、精巣重量に影響はみられ
なかった（Schmidt, et al., 1972）。また、ラットにクロロエタン9,980 ppmを6時間/日、5日/週、
2週間吸入暴露した試験で、生殖器の組織学的変化はみられていない（Landry et al., 1982）。

雌雄F344ラットにクロロエタン0、1,600、4,000、10,000 ppm (0、4,288、10,720、26,800 mg/m³)
を6時間/日、5日/週、2週間吸入暴露した試験で、雄4,000 ppm以上で肝臓重量の増加、雌雄
10,000 ppmで嗜眠がみられた（Landry, 1982）。

雌雄F344ラット（1群10匹）にクロロエタン0、2,500、5,000、10,000、19,000 ppmを6時間/
日、5日/週、13週間吸入暴露した試験で、19,000 ppm群に肝臓の相対重量の増加（雄）がみられたが、病理組織学的変化はみられなかった（U.S. NTP, 1989）。

雌雄F344ラット（1群50匹）にクロロエタン0、15,000 ppm (0、40,200 mg/m³) を6時間/日、
5日/週、102週間吸入暴露した発がん性試験では、クロロエタン暴露に起因すると思われる変
化はみられなかった（U.S. NTP, 1989）。

雄ビーグル犬（1群2匹）にクロロエタン0、1,600、4,000、10,000 ppm (0、4,288、10,720、
26,800 mg/m³) を6時間/日、5日/週、2週間吸入暴露した試験で、10,000 ppmの1匹に自発運動
亢進がみられた（Landry, 1982）。

イヌにクロロエタン9,980 ppm (26,746 mg/m³)を6時間/日、5日/週、2週間吸入暴露した試
験で、生殖器の組織学的変化はみられなかった（Landry et al., 1982）。
以上の報告から、クロロエタンの吸入暴露によって肝臓の重量増加、腎臓の尿細管上皮の再生性変化、微小な糸球体硬化症及び中枢神経系に対する軽度の影響が見られることが示されている。肝臓の重量増加及び肝細胞の空胞の増加は、いずれも軽微な変化であり、毒性学的意義は低いと考えられる。また、クロロエタンの吸入により雌マウスで性周期の延長がみられているが、血清エストラジオールやプロゲステロンの有意な変化はみられない、ラット及びイヌでも生殖器に対する影響はみられていない。クロロエタンの標的器官は、肝臓、腎臓、心臓、中枢神経系である。クロロエタンの吸入暴露によるNOAELは、ラットにおける2週間の試験から1,600 ppm (4,288 mg/m³) (Landry, 1982) であり、マウス及びラットでの13週間吸入暴露でのNOAELは10,000 ppm (26,800 mg/m³) であると判断する(U.S. NTP, 1989)。

吸入暴露以外の投与経路については有用な情報はない。

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウスB6C3F1</td>
<td>吸入暴露</td>
<td>11日間 23時間/日</td>
<td>0 ppm (0,670, 3,350, 13,400 mg/m³)</td>
<td>5,000 ppm:肝臓重量の増加、肝細胞の空胞の増加 (グリコーゲン又は脂肪)</td>
<td>Landry, 1989</td>
</tr>
<tr>
<td>マウス</td>
<td>吸入暴露</td>
<td>11日間 23時間/日</td>
<td>4,843 ppm</td>
<td>生殖器の組織学的変化なし</td>
<td>Landry et al., 1987; 1989</td>
</tr>
<tr>
<td>マウスB6C3F1 雌 30匹</td>
<td>吸入暴露</td>
<td>21日間 6時間/日</td>
<td>15,000 ppm</td>
<td>F0: 15,000 ppm:性周期の延長</td>
<td>Bucher et al., 1995</td>
</tr>
<tr>
<td>マウスB6C3F1 雌雄各10匹</td>
<td>吸入暴露</td>
<td>13週間 6時間/日 5日週</td>
<td>0 ppm (0,2,500, 5,000, 10,000, 19,000 ppm)</td>
<td>19,000 ppm:肝臓の相対重量の増加 (雌)、鼻腔出血 (雄 3/10匹、雌 6/10匹)。肝臓、鼻腔粘膜に病理組織学的変化なし</td>
<td>U.S. NTP, 1989</td>
</tr>
<tr>
<td>マウスB6C3F1 雌雄9週間各50匹</td>
<td>吸入暴露</td>
<td>100週間 6時間/日 5日週</td>
<td>0,15,000 ppm (0,40,200 mg/m³)</td>
<td>15,000 ppm: 雌: 自発運動亢進、腎臓の尿細管上皮の再生性変化、微小な糸球体硬化症、死亡率の増加。死亡率の増加は子宮の腫瘍発生に起因すると考察。</td>
<td>U.S. NTP, 1989</td>
</tr>
<tr>
<td>ラット雄</td>
<td>吸入暴露</td>
<td>8日間 4時間/日</td>
<td>436 ppm</td>
<td>F0: 436 ppm:精巣重に影響なし</td>
<td>Schmidt et al., 1972</td>
</tr>
<tr>
<td>ラット</td>
<td>吸入暴露</td>
<td>2週間 6時間/日 5日週</td>
<td>9,980 ppm (26,746 mg/m³)</td>
<td>生殖器の組織学的変化なし</td>
<td>Landry et al., 1982</td>
</tr>
<tr>
<td>ラットF344雌</td>
<td>吸入暴露</td>
<td>2週間 6時間/日 5日週</td>
<td>0 ppm (0,1,600, 4,000, 10,000 ppm (0,4,288, 10,720, 26,800 mg/m³)</td>
<td>4,000 ppm以上: 雄: 肝臓重量の増加。雌: 眠媒</td>
<td>Landry, 1982</td>
</tr>
</tbody>
</table>

NOAEL: 1,600 ppm (4,288 mg/m³) (U.S. NTP, 1989)
8.3.5 生殖・発生毒性

クロロエタンの実験動物に対する生殖・発生毒性試験結果を表 8-5に示す。

雌のCF-1マウスにクロロエタン0、500、1,500、5,000 ppm（0、1,340、4,020、13,400 mg/m³相当）を、妊娠6日目に15日目まで10時間/日の頻度で10日間吸入暴露した試験では、いずれの投与群においても母動物には影響はみられず、5,000 ppmでは胎児の頭蓋骨の骨化遅延がみられた（U.S. EPA, 1987）。

雌のマウスにクロロエタン15,000 ppm を6 時間/日の頻度で21日間吸入暴露した試験では、性周期の延長がみられたが、血清エストラジオールやプロゲステロンの有意な変化はみられなかった（Bucher et al., 1995）。

表 8-5 クロロエタンの生殖・発生毒性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス CF-1 雌 30匹/群</td>
<td>吸入暴露</td>
<td>妊娠6-15日目</td>
<td>0、500、1,500、5,000 ppm</td>
<td>F₀ 1)：いずれの群でも影響なし</td>
<td>U.S. EPA, 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>開腹18日</td>
<td>6時間/日</td>
<td>F₁ 1)：</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500、1,500 ppm: 影響なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,000 ppm: 頭蓋骨の骨化遅延</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NOAEL: 1,500 ppm (4,020 mg/m³相当)</td>
<td></td>
</tr>
<tr>
<td>マウス B6C3F1 雌 30匹</td>
<td>吸入暴露</td>
<td>21日間</td>
<td>1,500 ppm、6時間/日</td>
<td>F₀:</td>
<td>Bucher et al., 1995</td>
</tr>
</tbody>
</table>

1) F₀: 母動物 F₁: 胎児
太字はリスク評価に用いたデータを示す
8.3.6 原因毒性

クロロエタンに対する遺伝毒性試験結果を表8-6に示す。

in vitro 試験では、デシケーターを用いたガス暴露による復帰突然変異試験で、ネズミチフス菌 TA1535 では S9 の有無に関わらず陽性、TA100 では S9 を添加した場合のみ陽性、TA98 では S9 の有無に関わらず陰性と報告されている (ATSDR, 1998; GDCh BUA, 1998; U.S. NTP, 1989)。また、別の試験では、TA1535 と TA100 では S9 の有無に関わらず陽性であり、TA98 と TA1537 では陰性であったと報告されている (Milman et al., 1988)。クロロエタンの化学構造からの推定では、クロロメチル (-CH2Cl) 基がアルキル化能を有し、ネズミチフス菌に対して遺伝毒性を示すと報告されている (Tennant and Ashby, 1991)。

チャイニーズハムスター卵巣 (CHO) 細胞を用いた突然変異試験では S9 の有無に関わらず陽性であり (Ebert et al., 1994)、マウスの BALB/c-3T3 細胞を用いた形質転換試験では陰性であった (Tu et al., 1985)。マウスの B6C3F1 初代培養肝細胞を用いた DNA 修復試験では陰性であった (Milman et al., 1988)。

in vivo 試験では、マウスにクロロエタン 25,000 ppm (67,000 mg/m^3) を6時間/日で3日間鼻部暴露した試験では、骨髄細胞の小核は増加せず、また DNA 合成に影響を及ぼさなかった (Ebert et al., 1994)。

以上、クロロエタンはネズミチフス菌 TA100、1535 を用いた復帰突然変異試験及び培養細胞を用いた遺伝子突然変異試験で陽性である。一方、マウスの肝細胞を用いた in vitro DNA 修復試験及び BALB/c 3T3 細胞を用いた形質転換試験では陰性であり、マウスを用いた in vivo 小核試験も陰性である。結果を総合的にみて、クロロエタンは遺伝毒性を有すると判断する。
<table>
<thead>
<tr>
<th>試験系</th>
<th>試験材料</th>
<th>処理条件</th>
<th>用量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro 復帰突然変異試験</td>
<td>ネズミチフス菌 TA1535</td>
<td>ガス暴露</td>
<td>10-20 □/plate</td>
<td>-</td>
<td>U.S. NTP, 1989</td>
</tr>
<tr>
<td></td>
<td>TA100</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA98</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ネズミチフス菌 TA1535</td>
<td>ND</td>
<td>ND</td>
<td>-</td>
<td>Milman et al., 1988</td>
</tr>
<tr>
<td></td>
<td>TA100</td>
<td></td>
<td></td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA98</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TA1537</td>
<td></td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>形質転換試験</td>
<td>マウス BALB/c-3T3 細胞</td>
<td>ND</td>
<td>ND</td>
<td>- ND</td>
<td>Milman et al., 1988; Tu et al., 1985</td>
</tr>
<tr>
<td>遺伝子突然変異試験</td>
<td>CHO 細胞 (HGPRT 産)</td>
<td>ガス暴露</td>
<td>S9-: 0.65-2.03 mg/mL</td>
<td>+</td>
<td>Ebert et al., 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S9+: 1.02-2.48 mg/mL</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1.89-2.03)</td>
<td>(2.34-2.48)</td>
<td></td>
</tr>
<tr>
<td>DNA 修復試験</td>
<td>マウス B6C3F1 初代培養肝細胞</td>
<td>ND</td>
<td>ND</td>
<td>- ND</td>
<td>Milman et al., 1988</td>
</tr>
<tr>
<td>in vivo 小核試験</td>
<td>マウス B6C3F1 雌雄</td>
<td>鼻部吸入暴露</td>
<td>25,000 ppm □6 時間 / 日 □3 日 (67,000 mg/m³)</td>
<td>-</td>
<td>Ebert et al., 1994</td>
</tr>
<tr>
<td>不定期 DNA 合成試験</td>
<td>マウス B6C3F1 雄</td>
<td>鼻部吸入暴露</td>
<td>25,000 ppm □6 時間 / 日 □3 日 (67,000 mg/m³)</td>
<td>-</td>
<td>Ebert et al., 1994</td>
</tr>
</tbody>
</table>

1) - : 隠性; + : 陽性, 2) CHO: シャイニースハムスター卵巣, 3) HGPRT: ヒポキシンチン-グアニンホスホリポシルトランスフェラーゼ, ND: データなし

8.3.7 発がん性

クロロエタンの実験動物に対する発がん性試験結果を表 8-7に示す。

B6C3F1 マウスをクロロエタン 0、15,000 ppm (0、40,200 mg/m³) で 6 時間/日、5 日/週、100 週間吸入暴露した試験で、雄の投与群では肺の細気管支・肺胞腺腫/がんの発生率の有意な増加がみられました。しかし、試験終了時点での生存率は、対照群で 28/50、暴露群で 11/50 と低い値を示しました。死亡の主な原因は尿路感染で、試験開始約 2 週後に死亡した。雌の投与群では子宮内膜がんが高率に誘発され、さらに肝細胞腺腫/がんの発生率の有意な増加がみられた。生存率は、対照群で 32/50、暴露群で 2/50 であるが、暴露群は全体が子宮内膜がんにより死亡していた (U.S. NTP, 1989)。

F344 ラットをクロロエタン 0、15,000 ppm (40,200 mg/m³) で 6 時間/日、5 日/週、102 週間全身暴露した試験で、雄の投与群では皮膚の毛包上皮腫/脳腺腫/基底細胞がんの発生率の有意な増加がみられました。しかし、試験終了時点での生存率は、対照群で 16/50、暴露群で 8/50 と低い値を示しました。雌の投与群では脳の星状膠細胞腫がみられており、発生率の増加は有意ではなかったが背景データとの比較では有意であった。生存率は、対照群で 31/50、暴露群で 22/50 であった (U.S. NTP, 1989)。
以上、マウスの雌において高濃度 (15,000 ppm) で明らかな子宮の腫瘍の誘発がみられた。しかしながら、U.S.NTP (1989) は雄マウスでは試験終了時点での試験動物の生存率が低いため不適切な試験であり、また、雌雄ラットでの結果は疑わしいとしている。

国際機関等での発がん性評価を表 8-8に示す。なお、IARC は、証拠が限られていることから、グループ 3 (ヒトに対する発がん性については分類できない物質) に分類している。

<p>| 表 8-7 クロロエタンの発がん性試験結果 |</p>
<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1 雌雄 9 週齢</td>
<td>吸入暴露</td>
<td>100 週間 6 時間/日 5日/週</td>
<td>0, 15,000 ppm (0, 40,200 mg/m³)</td>
<td>雄
細気管支・肺胞腺腫/がん(合計)
0 ppm 5/50
15,000 ppm 10/48*
生存率
0 ppm 28/50
15,000 ppm 11/50 (尿路感染)
雌
子宮
子宮内膜がん
0 ppm 0/49
15,000 ppm 43/50*
肝臓
肝細胞腺腫/がん(合計)
0 ppm 3/49
15,000 ppm 8/48*
生存率
0 ppm 32/50
15,000 ppm 2/50 (子宮内膜がん)</td>
<td>U.S. NTP, 1989</td>
</tr>
<tr>
<td>ラット F344 雌雄 8 週齢</td>
<td>吸入暴露</td>
<td>102 週間 6 時間/日 5日/週</td>
<td>0, 15,000 ppm (0, 40,200 mg/m³)</td>
<td>雄
皮膚
毛包上皮腫/脂腺腫/基底細胞がん(合計)
0 ppm 0/50
15,000 ppm 5/50
生存率
0 ppm 16/50
15,000 ppm 8/50
雌
脳
星状線維性腫瘍
0 ppm 0/50
15,000 ppm 3/50
生存率
0 ppm 31/50
15,000 ppm 22/50</td>
<td>U.S. NTP, 1989</td>
</tr>
</tbody>
</table>

*: 統計学的に有意差あり
<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分類</th>
<th>分類基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC (2002)</td>
<td>グループ3</td>
<td>ヒトに対する発がん性については分類できない。</td>
</tr>
<tr>
<td>ACGIH (2002)</td>
<td>A3</td>
<td>ヒトへの関連性は不明であるが、実験動物で発がん性が確認された物質。</td>
</tr>
<tr>
<td>日本産業衛生学会 (2002)</td>
<td>-</td>
<td>2002年現在発がん性について評価されていない。</td>
</tr>
<tr>
<td>U.S. NTP (2001)</td>
<td>-</td>
<td>2001年現在発がん性について評価されていない。</td>
</tr>
</tbody>
</table>

8.4 ヒト健康への影響（まとめ）
クロロエタンは肺及び皮膚から容易に吸収され、その多くが未変化体のまま比較的速やかに呼気中に排泄される。
クロロエタンは40,000 ppm (107,200 mg/m³) でヒトに軽度の眼刺激性を示し、また、皮膚感作性を有する可能性が示唆されている。クロロエタンは沸点が低いので、実験動物では皮膚及び粘膜への刺激性試験は行われていないが、吸入暴露実験からは呼吸器粘膜への刺激性はみれていない。感作性については実験動物での報告はない。

実験動物に対するクロロエタンの吸入暴露による急性毒性試験の LC50 (2時間) は、マウス及びラットで約60,000 ppm (160,000 mg/m³) である。
クロロエタンは、ヒトで36,000～45,000 ppm (96,500～120,000 mg/m³) で麻酔作用を示し、以前は麻酔薬として使われていたが、高濃度では心臓毒性を有しているため現在では使われていない。また、クロロエタンは弱い肝毒性及び腎毒性を示す。慢性暴露では肝機能障害、幻覚、運動失調、眼振、構音障害及び歩行障害のような神経障害を起こすことが報告されている。
クロロエタンの実験動物における反復投与毒性については、肝臓、腎臓、心臓、中枢神経系が標的器官である。クロロエタンの吸入暴露による NOAEL は、ラットにおける2週間の試験から1,600 ppm (4,288 mg/m³) (Landry, 1982) であり、マウス及びラットでの13週間吸入暴露での NOAEL は10,000 ppm (26,800 mg/m³) である。

生殖・発生毒性については、クロロエタンに催奇形性はみられていない。妊娠マウスを用いた吸入暴露による催奇形性試験で親動物には影響はみられず、高濃度群（5,000 ppm = 13,400 mg/m³）では胎児に頭蓋骨の骨化遅延がみられており、児動物に対するNOAELは1,500 ppm (3,960 mg/m³) である。
遺伝毒性については、クロロエタンはネズミチフス菌 TA100、1535 を用いた復帰突然変異試験及び培養細胞を用いた遺伝子突然変異試験で陽性であるが、マウスの肝細胞を用いた in vitro DNA 修復試験及び BALB/c 3T3 細胞を用いた形質転換試験では陰性である。また、マウスを用いた in vivo 小核試験も陰性である。結果を総合的にみて、クロロエタンは遺伝毒性を有すると判断する。
発がん性については、ヒトでの疫学調査の報告はないが、マウスの雌において高濃度(15,000 mg/m³)で陽性である。
ppm)で明らかな子宮の腫瘍の誘発がみられた。U.S.NTP (1989) は、雄マウスでは試験終了時点での試験動物の生存率が低いため不適切な試験であり、また、雌雄ラットでの結果は疑わしいとしている。IARC は、グループ 3（ヒトに対する発がん性については分類できない物質）に分類している。

9．リスク評価
9.1 環境中の生物に対するリスク評価
環境中の生物に対するリスク評価は、水生生物を対象とし、その影響を 3 つの栄養段階（藻類・甲殻類・魚類）で代表させる。リスク評価は、無影響濃度等（NOEC、LC、EC）を推定環境濃度（EEC）で除した値である暴露マージン（MOE）と、無影響濃度等として採用した試験結果の不確実係数を比較することにより行う。

9.1.1 リスク評価に用いる推定環境濃度
本評価書では、クロロエタンの EEC として、調査年度が新しく、測定点も多いことから、環境庁による 1999 年度調査の AAーC 類型河川水中濃度が適切であると判断し、調査結果より算出した 95 パーセンタイルである 0.026 µg/L を用いた (6.3 参照)。

9.1.2 リスク評価に用いる無影響濃度
リスク評価に用いるクロロエタンの水生生物に対する無影響濃度等を表 9-1 に示した。3 つの栄養段階を代表する生物種（藻類、甲殻類、魚類）のうち、藻類については長期毒性試験結果 (Huls, 1993a), 甲殻類については急性毒性試験結果 (Huls, 1993b) を用いた（7.参照）。なお、魚類についての毒性試験結果は得られなかった。
これらの結果から、クロロエタンの環境中の水生生物に対するリスク評価に用いる無影響濃度として、最も低濃度から影響のみられた藻類であるセネデスムスに対する生存障害を指標とした、バイオマスによって算出した 72 時間 EC10 を NOEC と同等とみなし 2.7 mg/L (Huls, 1993a) を採用する。

表 9-1 クロロエタンの水生生物に対する無影響濃度等

<table>
<thead>
<tr>
<th>生物レベル</th>
<th>生物種</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>藻類</td>
<td>Scenedesmus subspicatus (セネデスムス)</td>
<td>72 時間 EC10 生長障害</td>
<td>2.7</td>
<td>Huls, 1993a</td>
</tr>
<tr>
<td>甲殻類</td>
<td>Daphnia magna (オジンコ)</td>
<td>48 時間 EC50 遊泳障害</td>
<td>58</td>
<td>Huls, 1993b</td>
</tr>
<tr>
<td>魚類</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

1) 調査した範囲では影響を適切に評価できる試験報告は得られていない。
大文字はリスク評価に用いたデータを示す。
9.1.3 暴露マージンの算出
クロロエタンの環境中の水生生物に対する MOE を、藻類のセネデスムスに対する生長阻害を指標とした、バイオマスによって算出した 72 時間 EC10 の 2.7 mg/L を用いて、以下のように算出した。

\[
\text{MOE} = \frac{\text{EC}_{10}}{\text{EEC}}
\]
\[
= \frac{2,700 (\mu \text{g} / \text{L})}{0.026 (\mu \text{g} / \text{L})} = 100,000
\]

不確実係数: 室内試験の結果から野外での影響を推定するための不確実係数 (10)
1つの栄養段階から 3つの栄養段階を推定するための不確実係数 (10)
不確実係数値: 100

9.1.4 環境中の生物に対するリスク評価結果
算出された MOE は 100,000 であり、不確実係数値 100 より大きく、クロロエタンの EEC においては、現時点では環境中の水生生物に悪影響を及ぼすことはないと判断する。

9.2 ヒト健康に対するリスク評価
ヒト健康に対するリスク評価は、我が国の住民を対象とする。クロロエタンのヒトにおける定量的な健康影響データは得られていないため、ヒト健康に対するリスク評価には動物試験データを用いることとする (8.参照)。リスク評価は、実験動物に対する無毒性量等 (NOAEL, LOAEL) を推定摂取量で除した値である MOE と、評価に用いた毒性試験結果の不確実係数値を比較することにより行う。

9.2.1 ヒトの推定摂取量
クロロエタンは、主に大気、わずかに飲料水及び食物（魚類）を通じてヒトに摂取されると推定され、それぞれの経路からの 1 日推定摂取量を表 9-2 に示した (6.5 参照)。
吸入及び経口経路のヒトの体重 1 kg あたりの 1 日推定摂取量 0.11、0.0044 μg/kg/日をヒト健康に対するリスク評価に用いた。

| 表 9-2 クロロエタンの1日推定摂取量 |
|-----------------|-----------------|-----------------|
| 摂取経路 | 1日推定摂取量 (μg/人/日) | 体重 1 kg あたりの 1日推定摂取量 (μg/kg/日) |
| 吸入 | 大気 (呼吸) | 5.4 | 0.11 |
| | 飲料水 | 0.058 | |
| | 食物 (魚類) | 0.16 | 0.0044 |
| | 小計 | 0.22 | |
| 全経路 | 合計 | 5.6 | 0.11 |

28
9.2.2 リスク評価に用いる無毒性量

クロロエタンの反復投与毒性に関しては、吸入経路で主として肝臓、腎臓、心臓、中枢神経系に影響がみられている。

吸入経路では、マウスによる13週間吸入暴露試験における肝臓の相対重量の増加、鼻腔出血を指標としたNOAEL 10,000 ppm (26,800 mg/m³) (U.S.NTP, 1989)、ラットによる13週間吸入暴露試験における肝臓の相対重量の増加を指標としたNOAEL 10,000 ppm (26,800 mg/m³) (U.S.NTP, 1989) がある。これらの値は、6時間/日、5日/週の投与頻度で得られた値であるので、1日推定吸入摂取量に換算するとそれぞれ、8,000 mg/kg/日 \(^1\)、3,600 mg/kg/日 \(^2\) となる。したがって、より低用量で影響がみられるラットによる13週間吸入毒性試験のNOAEL 3,600 mg/kg/日 (換算値) (U.S.NTP, 1989) を採用する。

経口経路では、調査した範囲では試験結果は得られなかった。

クロロエタンの生殖・発生毒性では、CF-1マウスにクロロエタンを妊娠6〜15日目に吸入投与した試験では、母動物に対しては影響がみられない濃度である5,000 ppmで胎児に対して頭蓋骨の骨化遅延の影響がみられ、NOAEL は1,500 ppm (4,020 mg/m³) である (U.S. EPA, 1987)。この値は、6時間/日の投与頻度で得られた値であるので、1日推定吸入摂取量に換算すると、1,700 mg/kg/日 \(^3\) となり、吸入経路での反復投与毒性より低いので無毒性量として採用する。

遺伝毒性については、クロロエタンはネズミチフス菌 TA100,1535 を用いた復帰突然変異試験及び培養細胞を用いた遺伝子突然変異試験で陽性であるが、マウスの肝細胞を用いたin vivo DNA 修復試験及びBALB/c 3T3 細胞を用いた形質転換試験では陰性である。これらの結果からクロロエタンは遺伝毒性を有するものと考えられる。

また、発癌性については、マウス、ラットにおいて腫瘍の発生率の増加がみられているが、クロロエタンに発癌性があるとは判断できない。IARC はクロロエタンの発癌性について、ヒトに対する発癌性について分類できない物質 (グループ 3) としている。

なお、米国 EPA 及び我が国の環境省は、本評価書と同じ CF-1マウスに妊娠6〜15日目に6時間/日吸入暴露した試験でみられた胎児頭蓋骨の骨化遅延を指標としたNOAEL 4,000 mg/m³ (1,504ppm) (Scortichini et al., 1986) を用いている (U.S.EPA, 2004; 環境省, 2003)。いずれの機関も経口経路におけるリスク評価は実施されていない。

\(^1\) NOAEL の換算値 = 26,800 (mg/m³) \times 0.05 (m³/日呼吸量) \times 6 (時間) / 24 (時間) \times 5 (日) / 7 (日)

\[= 8,000 \ (mg/kg/日) \]

\(^2\) NOAEL の換算値 = 26,800 (mg/m³) \times 0.26 (m³/日呼吸量) \times 6 (時間) / 24 (時間) \times 5 (日) / 7 (日)

\[= 3,600 \ (mg/kg/日) \]

\(^3\) NOAEL の換算値 = 4,020 (mg/m³) \times 0.05 (m³/日呼吸量) \times 6 (時間) / 24 (時間)

\[= 1,700 \ (mg/kg/日) \]
9.2.3 暴露マージンの算出
クロロエタンは、ヒトに対して主として吸収経路からの摂取が推定される。ここでは経口投与試験は影響を適切に評価できる試験結果が得られなかったため、吸収経路での MOE 及び生殖発生毒性に対する MOE を算出した。

a. 反復投与毒性に対する吸入経路での暴露出マージン
ラットによる 13 週間吸入毒性試験における肝臓の相対重量の増加を指標とした NOAEL 10,000 ppm (26,800 mg/m³、換算値: 3,600 mg/kg/日) を用いて、以下のように算出した。

\[
MOE = \text{NOAEL の換算値} / \text{ヒト体重 1 kg あたりの1日推定吸入摂取量} \\
= 3,600,000 (\mu g/kg/日) / 0.11 (\mu g/kg/日) \\
= 33,000,000
\]
不確実係数：動植物の種差に対する不確実係数 (10)
個人差における不確実係数 (10)
試験期間における不確実係数 (5)
不確実係数積: 500

b. 生殖・発生毒性に対する暴露出マージン
マウスを用いた吸入暴露による発生毒性試験の NOAEL 1,500ppm (4,020 mg/m³, 1,700 mg/kg/日) を用いて、以下のように算出した。

\[
MOE = \text{NOAEL の換算値/体重 1 kg あたりの1日推定吸入摂取量} \\
= 1,700,000 (\mu g/kg/日) / 0.11 (\mu g/kg/日) \\
= 15,000,000
\]
不確実係数：動植物の種差に対する不確実係数 (10)
個人差における不確実係数 (10)
不確実係数積: 100
表 9-3 クロロエタンの暴露マージンと不確実係数積

<table>
<thead>
<tr>
<th>毒性</th>
<th>摂取経路</th>
<th>体重 1 kg あたりの 1 日推定摂取量 (g/kg/日)</th>
<th>NOAEL (mg/kg/日)</th>
<th>MOE</th>
<th>不確実係数積</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般毒性</td>
<td>吸入</td>
<td>0.11</td>
<td>3,600(^{11})</td>
<td>33,000,000</td>
<td>500(^{11})</td>
</tr>
<tr>
<td></td>
<td>経口</td>
<td>0.0044</td>
<td>-(^{10})</td>
<td>- (^{40})</td>
<td>- (^{40})</td>
</tr>
<tr>
<td>生殖・発生毒性</td>
<td>吸入</td>
<td>0.11</td>
<td>1,700(^{11})</td>
<td>15,000,000</td>
<td>100(^{50})</td>
</tr>
</tbody>
</table>

1) ラット 13 週間 (6 時間/日、5 日/週) 吸入毒性試験における NOAEL 10,000 ppm (26,800 mg/m\(^3\)) の換算値
2) 種差 (10) □ 個人差 (10) □ 試験期間 (5)
3) 調査した範囲では影響を適切に評価できる試験は得られなかった
4) 算出せず
5) マウスの吸入暴露 (6 時間/日) による生殖・発生毒性試験における NOAEL 1,500ppm (4,020 mg/m\(^3\)) の換算値
6) 種差 (10) □ 個人差 (10)

9.2.4 ヒト健康に対するリスク評価結果

表 9-3 に示したようにクロロエタンの吸入経路の MOE 33,000,000 は、ヒト健康に対する評価に用いた毒性試験結果の不確実係数積 500 よりも大きい。また、生殖・発生毒性に対する MOE 15,000,000 も不確実係数積 100 より大きいため、現時点ではヒト健康に悪影響を及ぼすことはないと判断する。
ACGIH, American Conference of Governmental Industrial Hygienists (2002) TLVs and BEIs.
ATSDR, Agency for toxic substances and disease registry (1998) Toxicological profile for chloroethane, Atlanta, GA.

1) データベースの検索を 2002 年 4 月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。また、2004 年 4 月に国際機関等による新たなリスク評価書の公開の有無を調査し、キースタティとして採用すべき文献を入手した際には追加した。

GDCh BUA, German Chemical Society-Advisory Committee on Existing Chemicals of Environmental Relevance (1991) Chloroethane BUA Report No. 60., S. Hirzel Verlag, Stuttgart.

Huls, A.G., (1993c) Bestimmung der auswirkungen von ethylchlorid auf das schwimmverhalten von

SRC, Syracuse Research Corporation (2002) AopWin Estimation Software, ver. 1.90, North Syracuse,
NY.

U.S. NTP, National Toxicology Program (1989) Toxicology and carcinogenesis studies of chloroethane (ethyl chloride) (CAS No.75-00-3) in F344/N rats and B6C3F1 mice (inhalation studies). NTP Technical Report Series No.346, NTIS No.PB90-225053.

化学工業日報社 (2001) 化学物質管理促進法 PRTR・MSDS 対象物質全データ (改訂版).
化学物質評価研究機構 (2001) 化学物質有害性・リスク調査等報告書 - PRTR 法指定化学物質の
環境挙動・生態影響・健康影響 - , 平成 12 年度通商産業省委託研究.
第一法規出版 , 東京 (http://www.cerij.or.jp/ceri_jp/koukai/sheet/sheet_index4.htm,
環境省 (2002a) 平成 13 年度版 化学物質と環境.
環境省 (2002b) 水環境中の要調査項目存在状況調査結果 (平成 11 年度調査).
環境庁 (1978) 昭和 52 年度版 化学物質と環境.
環境庁 (1980) 昭和 54 年度版 化学物質と環境.
経済産業省 (2003) 告示第 53 号 (平成 13 年度 化学物質審査規制法 指定化学物質の製造及び
輸入の合計数量に関する公表), 官報, 平成 15 年 3 月 11 日.
(http://www.meti.go.jp/policy/chemical_management/kasinhou/etc/jittaityousakouhyou.pdf に記
載あり)
経済産業省, 環境省 (2003a) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に
関する法律 (化学物質排出把握管理促進法)に基づく届出排出量及び移動量並びに届出
外排出量の集計結果について排出年度: 平成 13 年度 .
経済産業省, 環境省 (2003b) 平成 13 年度 PRTR 届出外排出量の推計方法等の概要
(http://www.meti.go.jp/policy/chemical_management/kohyo/todokedegaisanshutudata.htm から
引用).
産業技術総合研究所 (2003) 産総研 - 曝露・リスク評価大気拡散モデル (AIST-ADMER)
(http://unit.aist.go.jp/crm/admer/).
製品評価技術基盤機構 (2003) 化学物質のリスク評価及びリスク評価手法の開発プロジェクト/
平成 14 年度研究報告書 (新エネルギー・産業技術総合開発機構 委託事業).
製品評価技術基盤機構 (2004) 化学物質のリスク評価及びリスク評価手法の開発プロジェクト/
平成 15 年度研究報告書 (新エネルギー・産業技術総合開発機構 委託事業).
情報 (http://www.nite.go.jpから引用).
化学物質の初期リスク評価書
No.41 クロロエタン

作成経緯
2003年3月 原案作成
2004年2月 有害性評価部分 経済産業省 化学物質審議会管理部・審査部会 第18回安全評価管理小委員会 審議、了承
2004年7月 PRTRデータを用いた暴露・リスク評価見直し原案作成
2004年11月 有害性評価部分 初期リスク評価書作成指針等の変更による修正、新たな情報の追加のため、安全評価管理小委員会 報告
2005年5月 Ver.1.0 公表

初期リスク評価責任者

| プロジェクトリーダー | 中西 準子 |

有害性評価外部レビュアー

| 環境中の生物への影響 (7章) | 吉岡 義正 |
| 大分大学教育福祉科学部 |
| ヒト健康への影響 (8章) | 高橋 道人 |
| 昭和大学 客員教授 |

初期リスク評価実施機関・リスク評価担当者

| 財団法人 化学物質評価研究機構 | 江南 雅雄 |
| 奥田 尚子 |
| 梶原 美次 |
| 谷口 芳信 |
| 野坂 俊樹 |
| 林 浩次 |
| 三浦 千明 |
| 独立行政法人 製品評価技術基盤機構 | 常見 知広 |

連絡先

| 財団法人 化学物質評価研究機構 安全性評価技術研究所 |
| 〒112-0004 東京都文京区後楽1-4-25 日教販ビル7F |
| tel. 03-5804-6136 fax. 03-5804-6149 |

| 独立行政法人 製品評価技術基盤機構 化学物質管理センター リスク評価課 |
| 〒151-0066 東京都渋谷区西原2-49-10 |
| tel. 03-3468-4096 fax. 03-3481-1959 |