化学物質の初期リスク評価書

Ver. 1.0
No. 13

1,4-ジオキサン
1,4-Dioxane

化学物質排出把握管理促進法政令号番号：1-113

CAS 登録番号: 123-91-1

2005年5月

新エネルギー・産業技術総合開発機構

委託先 財団法人化学物質評価研究機構
委託先 独立行政法人 製品評価技術基盤機構
序文

目的
「化学物質の初期リスク評価書」は、独立行政法人 新エネルギー・産業技術開発機構から委託された化学物質総合評価管理プログラムの一環である「化学物質のリスク評価及びリスク評価手法の開発」プロジェクトの成果である。このプロジェクトは、「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」(化学物質排出把握管理促進法)の対象化学物質を中心に有害性情報、排出量等の暴露情報など、リスク評価のための基礎データを収集・整備するとともに、これらを利用したリスク評価手法を開発し、評価するものである。

「化学物質の初期リスク評価書」では、環境中の生物及びヒト健康に対する化学物質のリスクについてスクリーニング評価を行い、その結果、環境中の生物あるいはヒト健康に悪影響を及ぼすことが示唆されると判断された場合は、その化学物質に対して更に詳細な調査、解析及び評価等の必要とされる行動の提案を行うことを目的とする。

初期リスク評価の対象
化学物質排出把握管理促進法第一種指定化学物質のうち、生産量、環境への排出量及び有害性情報などを基に選択した化学物質を初期リスク評価の対象とする。環境中の生物への影響については、有害性評価手法が国際的に整えられている水生生物を対象とする。ヒト健康への影響については、我が国の住民を対象とし、職業上の暴露は考慮しない。

公表までの過程
財団法人 化学物質評価研究機構及び独立行政法人 製品評価技術基盤機構が共同して評価書案を作成し、有害性評価 (環境中の生物への影響及びヒト健康への影響) については外部の有識者によるレビューを受け、その後、経済産業省化学物質審議会管理部会・審査部会安全評価管理小委員会の審議、承認を得ている。また、暴露評価及びリスク評価については独立行政法人 産業技術総合研究所によるレビューを受けています。本評価書は、これらの過程を経て公表している。

なお、本評価書の作成に関する手法及び基準は「化学物質の初期リスク評価指針 Ver. 1.0」及び「作成マニュアル Ver. 1.0」として、ホームページ (http://www.nite.go.jp/) にて公開されている。

-ii-
要約

1,4-ジオキサンには、抽出、反応用溶剤や塩素系溶剤の安定剤等の用途がある。化学物質排出管理促進法に基づく「平成13年度排出量及び移動量並びに届出外排出量の集計結果」によると、1,4-ジオキサンの届出排出・移動量は、2001年度1年に全国で、大気160トン、公共用水域に23トン、廃棄物として2,368トン、下水道に13トン移動している。土壤への排出はない。また届出外排出量としては対象業種の届出外事業者から73トン、非対象業種、家庭、移動体からの排出量は推計されていない。

環境中の生物に対する暴露マージンと初期リスク評価：1,4-ジオキサンの河川水中濃度は、環境庁及び化学物質評価研究機構において測定されており、化学物質評価研究機構における2001年度の多摩川、利根川、荒川、淀川及び筑後川における測定結果では、AA-C類型水域における測定値の95パーセンタイルは2.9μg/Lであった。そこで、環境中の水生生物に対するリスクを評価する推定環境濃度（EEC）として、2.9μg/Lを採用した。水生生物に対して最も強い有害性を示すデータとして、藻類であるセレナストラムに対する生長阻害を指標とした72時間NOECの580mg/Lを採用した。暴露マージン（MOE）は200,000であり、本評価における不確実係数10より大きく、現時点では、1,4-ジオキサンが環境中の水生生物に悪影響を及ぼすことはないと判断する。

ヒト健康に対する暴露マージンと初期リスク評価：大気（0.14μg/m³）、飲料水（1.8μg/L）、食物（魚類：3.0μg/kg[推定値]）を経由したヒトの体重1kgあたりの1日摂取量を吸入口それぞれの経路として0.056μg/kg/日と推定した。1,4-ジオキサンのヒトにおける定量的な健康影響データは得られていないため、ヒト健康への影響のリスク評価には長期の動物試験データを用いた。吸入口経路では、調査した範囲では影響を適切に評価できる試験結果は得られなかった。経口経路では、ラットの2年間の飲水投与試験の肝細胞の変性と壊死、肝細胞過形成、尿細管上皮の変性及び再生を指標としたNOAEL 0.01%(9.6mg/kg/日相当)を採用した。また、1,4-ジオキサンは遺伝毒性試験の結果から遺伝毒性を示さないと判断した。発がん性については、マウス及びラットに発がん性を示し、IARCでは2Bに分類されている。本評価書ではF344ラットに104週間経口（飲水）投与した実験の肝細胞腺腫の発生率の増加を指標としたNOAEL 200ppm（雄：26mg/kg/日、雌：29mg/kg/日相当）を採用した。1,4-ジオキサンの経口経路のMOE120,000は、ヒト健康に対する評価に用いた毒性試験結果の不確実係数10よりも大きくなり、また、全経路のMOE 69,000も不確実係数100より大きいため、1,4-ジオキサンは、現時点ではヒト健康に悪影響を及ぼすことはないと判断する。なお、発がん性に対するMOE190,000も不確実係数1,000よりも大きく、現時点ではヒト健康に悪影響を及ぼすことはないと判断する。

1,4-ジオキサンは、経口経路からの摂取量と同等の量を吸入口経路から摂取されているが、信頼性のある吸入口暴露試験データが得られなかったこと、また、消費者暴露として経皮暴露が考えられることから、吸入口暴露及び経皮暴露による毒性試験データの取得が重要である。これらの試験データが得られた時点で、再度初期リスク評価を行う必要がある。
目次

1. 化学物質の同定情報.. 1
 1.1 物質名.. 1
 1.2 化学物質審査規制法宮報公示整理番号.. 1
 1.3 化学物質排出把握管理促進法政令号番号... 1
 1.4 CAS 登録番号.. 1
 1.5 構造式.. 1
 1.6 分子式... 1
 1.7 分子量... 1

2. 一般情報.. 1
 2.1 別名... 1
 2.2 純度... 1
 2.3 不純物... 1
 2.4 添加剤又は安定剤... 1
 2.5 現在の我が国における法規制... 1

3. 物理化学的性状... 2

4. 発生源情報... 2
 4.1 製造・輸入量等... 2
 4.2 用途情報.. 2
 4.3 排出源情報.. 3
 4.3.1 化学物質排出把握管理促進法に基づく排出源... 3
 4.3.2 その他の排出源.. 4
 4.4 排出経路の推定.. 5

5. 環中運命... 5
 5.1 大気中での安定性... 5
 5.2 水中での安定性.. 5
 5.2.1 非生物的分解性.. 5
 5.2.2 生分解性.. 6
 5.2.3 下水処理による除去.. 6
 5.3 環境水中での動態... 6
 5.4 生物濃縮性.. 6

6. 暴露評価... 7
6.1 環境中分布予測... 7
6.2 環境中濃度 ... 7
 6.2.1 環境中濃度の測定結果 ... 7
 6.2.2 環境中濃度の推定 ... 10
6.3 水生生物生息環境における推定環境濃度 12
6.4 ヒトへの暴露シナリオ ... 13
 6.4.1 環境経由の暴露 ... 13
 6.4.2 消費者製品経由の暴露 .. 13
6.5 推定摂取量 ... 13

7. 環境中の生物への影響 ..14
 7.1 水生生物に対する影響 .. 14
 7.1.1 微生物に対する毒性 ... 14
 7.1.2 藻類に対する毒性 .. 15
 7.1.3 無脊椎動物に対する毒性 ... 16
 7.1.4 魚類に対する毒性 .. 16
 7.1.5 その他の水生生物に対する毒性 17
 7.2 陸生生物に対する影響 .. 17
 7.2.1 微生物に対する毒性 ... 17
 7.2.2 植物に対する毒性 ... 18
 7.2.3 動物に対する毒性 ... 18
 7.3 環境中の生物への影響 (まとめ) .. 18

8. ヒト健康への影響 .. 18
 8.1 生体内運命 .. 18
 8.2 疫学調査及び事例 .. 22
 8.3 実験動物に対する毒性 ... 23
 8.3.1 急性毒性 ... 23
 8.3.2 刺激性及び腐食性 ... 24
 8.3.3 感作性 ... 24
 8.3.4 反復投与毒性 .. 24
 8.3.5 生殖・発生毒性 ... 26
 8.3.6 遺伝毒性 ... 26
 8.3.7 発がん性 ... 30
 8.4 ヒト健康への影響 (まとめ) .. 34

9. リスク評価 ... 36
 9.1 環境中の生物に対するリスク評価 36
 9.1.1 リスク評価に用いる推定環境濃度 36

- V -
9.1.2 リスク評価に用いる無影響濃度 ... 36
9.1.3 暴露マージンの算出 ... 36
9.1.4 環境中の生物に対するリスク評価結果 .. 37
9.2 ヒト健康に対するリスク評価 .. 37
 9.2.1 ヒトの推定摂取量 .. 37
 9.2.2 リスク評価に用いる無毒性量 ... 37
 9.2.3 暴露マージンの算出 ... 38
 9.2.4 ヒト健康に対するリスク評価結果 .. 39

文 献 .. 41
1. 化学物質の同定情報
1.1 物質名 □ 1,4-ジオキサン
1.2 化学物質審査規制法案号 □ 5-839
1.3 化学物質排出把握管理促進法政令号 □ 1-113
1.4 CAS登録番号 □ 123-91-1
1.5 構造式
\[\text{\includegraphics{structure.png}} \]
1.6 分子式 □ C₄H₈O₂
1.7 分子量 □ 88.11

2. 一般情報
2.1 別名
p-ジオキサン、1,4-ジエチレンジオキシド、1,4-ジオキサシクロヘキサン、ジエチレンエーテル、ジオキシエチレンエーテル

2.2 純度
99.9% 以上（一般的な製品） (化学物質評価研究機構, 2002)

2.3 不純物
2-メチル-1,3-ジオキソラン（一般的な製品） (化学物質評価研究機構, 2002)

2.4 添加剤又は安定剤
2,6-ジ-tert-プチル-4-メチルフェノール（一般的な製品） (化学物質評価研究機構, 2002)

2.5 現在の我が国における法規制
化学物質排出把握管理促進法：第一種指定化学物質
化学物質審査規制法：指定化学物質（第二種監視化学物質）
労働安全衛生法：危険物引火性の物、第二種有機溶媒、名称等を表示すべき有害物・名称等を通知すべき有害物、指針を公表した化学物質等
消防法：危険物第四類第一石油類
水道法：水質基準 0.05 mg/L
海洋汚染防止法：有害液体物質D類
船舶安全法：引火性液体類
航空法：引火性液体

-1-
港則法：引火性液体類

3. 物理化学的性状
外観：無色液体（U.S. NLM:HSDB, 2001）
融点：11.80 °C (Merck, 2001)
沸点：101.1 °C (Merck, 2001; IPCS, 1999)
引火点：12 °C (密閉式) (NFPA, 2002)
発火点：180 °C (IPCS, 1999; NFPA, 2002)
爆発限界：2～22.5 vol% (空気中) (IPCS, 1999)
比重：1.0337 (20 °C) (U.S. NLM:HSDB, 2001)
蒸気密度：0.30 (空気 = 1)
蒸気圧：0.40 kPa (20 °C), 4.9 kPa (25 °C), 6.7 kPa (30 °C) (Verschueren, 2001)
分配係数：log Kow = -0.27 (測定値), -0.32 (推定値) (SRC:KowWin, 2002)
解離定数：解離基なし
スペクトル（注）必要マススペクトルフラグメント
m/z 28 (基準ピーク= 1.0), 88 (0.63), 58 (0.42) (産業技術総合研究所, 2004)
吸着性：吐着吸着係数 Koc= 1.23 (推定値) (U.S. NLM:HSDB, 2001)
溶解性：4.4-ジオキサン/水: 任意に混和 (U.S. NLM:HSDB, 2001)
ヘンリー定数: 0.486 Pa·m³/mol (4.80 x 10⁻⁶ atm·m³/mol) (25 °C, 測定値) (SRC:HenryWin, 2002)
換算係数: (気相, 20 °C) 1 ppm = 3.66 mg/m³, 1 mg/m³ = 0.273 ppm

4. 発生源情報
4.1 製造・輸入量等
1,4-ジオキサンの1996年から2001年までの6年間の製造及び輸入量等は表 4-1の通りである（通商産業省, 1997-2000a,b; 経済産業省, 2002-2003）。

<table>
<thead>
<tr>
<th>年</th>
<th>製造及び輸入量</th>
<th>輸出量</th>
<th>国内供給量</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造及び輸入量</td>
<td>5,954</td>
<td>5,333</td>
<td>4,294</td>
</tr>
<tr>
<td>輸出量</td>
<td></td>
<td>965</td>
<td>864</td>
</tr>
<tr>
<td>国内供給量</td>
<td>4,989</td>
<td>4,469</td>
<td>3,598</td>
</tr>
</tbody>
</table>

(通商産業省, 1997-2000a,b; 経済産業省, 2002-2003)
1) 2000年年度の製造及び輸入量に対する輸出割合16.2%を用いた（製品評価技術基盤機構, 2002）。

4.2 用途情報
1,4-ジオキサンの用途及びその使用割合は表 4-2の通りである（製品評価技術基盤機構, 2002）。1,4-ジオキサンは、セルロースエステル類及びセルロースエーテル類の溶剤、有機合成
反応・抽出溶剤、トランジスター用・合成皮革用溶剤、塗料・医薬品の合成原料、試薬用、塩素系有機溶剤の安定剤、洗浄剤の調整用溶剤、繊維処理・染料・印刷時の分散・潤滑剤、パルプ精製時の溶剤等に用いられる。主に抽出、反応用溶剤に使用され、また塩素系溶剤の安定剤にも使用されている。

過去には、塩素系溶剤、特に 1,1,1-トリクロロエタンの安定剤として約 2%添加されて多量に使用されてきたが、モントリオール議定書及び我が国のオゾン層保護法に基づく 1996 年（平成 8 年）からの不可欠用途（エッセンシャルユース）を除いた 1,1,1-トリクロロエタンの製造及び使用の廃絶により、この分野での 1,4-ジオキサンの用途は減少している。

<table>
<thead>
<tr>
<th>用途</th>
<th>割合</th>
</tr>
</thead>
<tbody>
<tr>
<td>抽出、反応用溶剤</td>
<td>86.7</td>
</tr>
<tr>
<td>塩素系溶剤の安定剤</td>
<td>2.5</td>
</tr>
<tr>
<td>洗浄用溶剤</td>
<td>0.01</td>
</tr>
<tr>
<td>その他</td>
<td>10.8</td>
</tr>
<tr>
<td>合計</td>
<td>100</td>
</tr>
</tbody>
</table>

(製品評価技術基盤機構, 2002)

4.3 排出源情報

4.3.1 化学物質排出把握管理促進法に基づく排出源

化学物質排出把握管理促進法に基づく「平成 13 年度届出排出量及び移動量及び届出外排出量の集計結果」（経済産業省, 環境省, 2003a）（以下、2001 年度 PRTR データ）によりと、1,4-ジオキサンは 1 年間に全国合計で届出事業者から大気へ 160 トン、公共用水域へ 23 トン排出され、廃棄物として 2,368 トン、下水道に 13 トン移動している。土壤への排出はない。また届出外排出量としては対象業種の届出外事業者から 73 トン排出されたと推計されている。

a. 届出対象業種からの排出量と移動量

2001 年度 PRTR データに基づき、1,4-ジオキサンの対象業種別の環境媒体（大気、水域、土壌）への排出量と移動量を表 4-3 に整理した。その際、経済産業省及び環境省による届出外事業者からの排出量推計値は環境媒体別とはなっていないため、業種ごとの大気、水域、土壌への分量は届出データと同じ分量と仮定し、環境媒体別の排出量を推定した（製品評価技術基盤機構, 2004)。
表 4-3 1,4-ジオキサンの届出対象業種別の環境媒体への排出量等（トン/年）

<table>
<thead>
<tr>
<th>業種名</th>
<th>届出</th>
<th>届出外</th>
<th>届出と届出外の排出量合計</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>排出量</td>
<td>移動量</td>
<td>排出量</td>
</tr>
<tr>
<td></td>
<td>大気</td>
<td>水域</td>
<td>土壤</td>
</tr>
<tr>
<td>化学工業</td>
<td>147</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>窯業・土石製品製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>繊維工業</td>
<td><0.5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>食料品製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>プラスチック製品製造業</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>電気機械器具製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>その他の製造業</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>精密機械器具製造業</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>その他□</td>
<td>1</td>
<td><0.5</td>
<td>0</td>
</tr>
<tr>
<td>合計□</td>
<td>160</td>
<td>23</td>
<td>0</td>
</tr>
</tbody>
</table>

なお、2001年の1,4-ジオキサンの製造量及びその製造段階での排出原単位（日本化学工業協会, 2002）から1,4-ジオキサンの製造段階における排出量は、大気へ9トン、水域へ5トン排出されると推定される（製品評価技術基盤機構, 2004）。したがって、2001年度PRTRデータに基づく届出対象業種からの1,4-ジオキサンの排出量のほとんどは、製造段階ではなく、使用段階での排出と考えられる。

b. 非対象業種、家庭及び移動体からの排出量

2001年度PRTRデータでは、1,4-ジオキサンの非対象業種、家庭及び移動体からの排出量は推計対象となっていない（経済産業省、環境省, 2003b）。

4.3.2 その他の排出源

2001年度PRTRデータで推計対象としている以外の1,4-ジオキサンの排出源として、ポリオキシエチレン系の非イオン界面活性剤及びその硫酸エステルの製造工程において副生成することが知られている（GDCh BUA, 1991; ECB, 2002）。また、製薬剤、農薬、マグネットテープ、塗料、ラッカー、その残渣に含まれている可能性を指摘した報告があるが（ECB, 2002）、国内で
の副生成に起因する 1,4-ジオキサンの排出、1,4-ジオキサンを含んだ製品からの排出については定量的な情報が得られていない。その他にも国立環境研究所は、2つの廃棄物埋立処分場の放流水道から 1,4-ジオキサンを検出しており、その要因としてプラスチックの熱処理による生成の可能性を挙げているが、起源についてはなお不明な点が多いとしている（国立環境研究所、1999）。

4.4 排出経路の推定
1,4-ジオキサンは、溶剤として使用されているという用途情報及び 2001 年度 PRTR データ等から判断して、主たる排出経路は、1,4-ジオキサンあるいは 1,4-ジオキサンを含む製品を使用する段階からの排出と考えられる。ここでは副生成による事業所からの 1,4-ジオキサンの排出、副生成した 1,4-ジオキサンの製品中の使用による排出、廃棄物処分場からの排出については、定量的データが得られていないため、排出量としては考慮しない。
1,4-ジオキサンの放出シナリオとして、1年間に全国で、大気へ 224 トン、水域へ 33 トン排出されると推定した。ただし、廃棄物としての移動量及び下水道への移動量については、各処理施設における処理後の環境への排出を考慮していない。

5. 環境内運命
5.1 大気中での安定性
a. OH ラジカルとの反応性
対流圈大気中では、1,4-ジオキサンとOHラジカルとの反応速度定数が 1.09 × 10^{11} \text{cm}^3/\text{分子/秒} (25\degree, 測定値) である (SRC:AopWin, 2001)。OHラジカル濃度を 5 × 10^5 ～ 1 × 10^6 分子/cm^3 とした時の半減期は 1～2日と計算される。1,4-ジオキサンとOHラジカルとの反応による生成物はアルデヒドとケトンと考えられる (U.S.NLM: HSDB, 2001)。

b. オゾンとの反応性
1,4-ジオキサンとオゾンとの反応性については、調査した範囲内では報告されていない。

c. 硝酸ラジカルとの反応性
1,4-ジオキサンと硝酸ラジカルとの反応性については、調査した範囲内では報告されていない。しかし、1,4-ジオキサンと一酸化窒素の混合物に米国テキサス州の夏季における太陽光の約2.65 倍の強度をもつ紫外線を 27\degree で照射すると 3.4 時間後には 50%が分解されるとの報告がある (U.S.NLM: HSDB, 2001)。

5.2 水中での安定性
5.2.1 非生物的分解性
1,4-ジオキサンは水中の OH ラジカルにより光酸化を受け、pH 7 では半減期は336 日である (U.S.NLM: HSDB, 2001)。1,4-ジオキサンには加水分解を受けやすい化学結合はない (U.S.NLM: HSDB, 2001) ので、一般的な水環境中では加水分解されない。
5.2.2 生分解性
化学物質審査規制法による好気的生分解試験においては、2週間で分解率0%であり、難分解と判定されている（通商産業省, 1976）。1,4-ジオキサンは化学物質審査規制法に基づく好気的生分解性試験では、被験物質濃度100mg/L、活性汚泥濃度30mg/L、試験期間2週間の条件において、生物化学的酸素消費量（BOD）測定での分解率は0%であり、難分解性と判定されている。なお、ガスクロマトグラフ（GC）測定での分解率は1%であった（通商産業省, 1976）。
また、未処理の工場廃水処理用活性汚泥を用いた実験では、400mg/Lの濃度で、10日後には40%が生分解したとの報告がある（Verschueren, 2001）。
なお、1,4-ジオキサンの嫌気的生分解性については調査した範囲内では報告されていない。

5.2.3 下水処理による除去
1,4-ジオキサンの下水処理場での除去率は最大でも25%程度で、生物処理による除去が非常に難しいことが報告されている（庄司ら, 2001）。活性炭への吸着性が弱く、オゾンによる分解処理でしか除去できない（相澤, 2001）。

5.3 環境水水中での動態
1,4-ジオキサンの下水処理場での除去率は最大でも25%程度で、生物処理による除去が非常に難しいことが報告されている（庄司ら, 2001）。活性炭への吸着性が弱く、オゾンによる分解処理でしか除去できない（相澤, 2001）。1,4-ジオキサンは環境水中では加水分解せず、また生分解も難い。水に任意の割合で混和するため、水面からの揮散の半減期は推定できないが、常温での比較的高い蒸気圧（4.0kPa, 20℃, 3章参照）からある程度の揮散は考えられる。
以上より、環境水中に従って、1,4-ジオキサンが河川等の環境水中へ放出排出された場合は、揮散によりゆっくりと除去されると推定される。

5.4 生物濃縮性
化学物質審査規制法によるコイを用いた6週間の濃縮度試験において、水中濃度10mg/Lにおける生物濃縮係数（BCF）は0.2~0.6、水中濃度1mg/LにおけるBCFは0.3~0.7であり、1,4-ジオキサンは濃縮性がない、あるいは低いと判断される物質である（通商産業省, 1976）。1,4-ジオキサンは化学物質審査規制法に基づくコイを用いた6週間の濃縮度試験で、水中濃度が10mg/L及び1mg/Lにおける生物濃縮係数（BCF）はそれぞれ0.2~0.6及び0.3~0.7であり、濃縮性がない又は低いと判定されている（経済産業省, 1976）。
6. 暴露評価
6.1 環境中分布予測
1,4-ジオキサンが、大気、水域又は土壌のいずれかに定常的に放出されて定常状態に到達した状態での環境中での分布をフガシティモデル・レベル III (Mackay et al., 1992) によって予測した（表 6-1）。変動要因として、物理化学的性質及び環境中での移動、分解速度を考慮し、環境因子は関東地域 100 km 平方 100 km を想定して大気の高さ 1,000 m、土壌表面積比率 80%、土壌中平均分布の深さ 20 cm、水圏表面積 20%、平均水深 10 m、底質層平均深さ 5 cm とした。環境への放出は、大気、水域及び土壌の各々に個別に放出される 3 つのシナリオを設定した (化学物質評価研究機構, 2001)。
1,4-ジオキサンは、大気中に放出された場合は、その大気中に 35%、水域に 48%、土壌に 17%分布し、水域に放出された場合は主として水域に分布、また、土壌に放出された場合は、水域に 42%、土壌に 57%分布するものと予測される。

<table>
<thead>
<tr>
<th>シナリオ</th>
<th>分布 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>大気</td>
</tr>
<tr>
<td>シナリオ 1 (大気中に 100%放出)</td>
<td>35.0</td>
</tr>
<tr>
<td>シナリオ 2 (水域中に 100%放出)</td>
<td>0.1</td>
</tr>
<tr>
<td>シナリオ 3 (土壌中に 100%放出)</td>
<td>0.1</td>
</tr>
</tbody>
</table>

（化学物質評価研究機構, 2001）

6.2 環境中濃度
6.2.1 環境中濃度の測定結果
a. 大気中の濃度
1,4-ジオキサンの大気中濃度として、環境庁による 2000 年度の調査結果を表 6-2に整理する。その結果、全国 12 地点中 9 地点で検出され、大気中濃度の 95 パーセンタイルは 0.14 g/m³ となる（環境省, 2002a）。

<table>
<thead>
<tr>
<th>調査年度</th>
<th>検出地点数/調査地点数</th>
<th>検出数/検体数</th>
<th>検出範囲 (g/m³)</th>
<th>幾何平均 (g/m³)</th>
<th>95 パーセンタイル (g/m³)</th>
<th>検出限界 (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>9/12</td>
<td>22/34</td>
<td>nd-1.2</td>
<td>0.023</td>
<td>0.14</td>
<td>0.0068</td>
</tr>
</tbody>
</table>

（環境省, 2002a）
nd: 不検出
b. 公共用水域中の濃度

1,4-ジオキサンの公共用水域（河川、湖沼、海域）中濃度については、環境庁において指定化学物質等検討調査として 1990 年から 2000 年まで測定されている。その結果を表 6-3 に整理する (環境省, 2002a)。その結果、検出頻度は過去 10 年間変化がないが、幾何平均値は減少傾向にあった。また、表 6-3 の 2000 年度の公共用水域中濃度のみを河川、湖沼、海域に分けて、表 6-4 に整理する。その結果、AA-C 類型の河川水中濃度の幾何平均は 0.23 □ g/L 、95 パーセンタイルは 0.61 □ g/L であり、海域水中の幾何平均は 0.21 □ g/L 、95 パーセンタイルは 4.3 □ g/L であった。

表 6-3 1,4-ジオキサンの公共用水域中の濃度の経年変化

<table>
<thead>
<tr>
<th>年度</th>
<th>検出数</th>
<th>検出範囲 (□ g/L)</th>
<th>幾何平均 (□ g/L)</th>
<th>検出限界 (□ g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>62/96</td>
<td>nd-35</td>
<td>0.41</td>
<td>0.1</td>
</tr>
<tr>
<td>1991</td>
<td>66/96</td>
<td>nd-8.8</td>
<td>0.42</td>
<td>0.1</td>
</tr>
<tr>
<td>1992</td>
<td>64/99</td>
<td>nd-19</td>
<td>0.39</td>
<td>0.1</td>
</tr>
<tr>
<td>1993</td>
<td>67/102</td>
<td>nd-13</td>
<td>0.33</td>
<td>0.1</td>
</tr>
<tr>
<td>1994</td>
<td>60/96</td>
<td>nd-15</td>
<td>0.31</td>
<td>0.08</td>
</tr>
<tr>
<td>1995</td>
<td>64/105</td>
<td>nd-7.6</td>
<td>0.24</td>
<td>0.1</td>
</tr>
<tr>
<td>1996</td>
<td>68/105</td>
<td>nd-9.02</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>1997</td>
<td>70/102</td>
<td>nd-42.8</td>
<td>0.28</td>
<td>0.08</td>
</tr>
<tr>
<td>1998</td>
<td>63/103</td>
<td>nd-5.3</td>
<td>0.18</td>
<td>0.08</td>
</tr>
<tr>
<td>1999</td>
<td>71/105</td>
<td>nd-46</td>
<td>0.22</td>
<td>0.08</td>
</tr>
<tr>
<td>2000</td>
<td>60/98</td>
<td>nd-160</td>
<td>0.19</td>
<td>0.08</td>
</tr>
</tbody>
</table>

(環境省, 2002a)

表 6-4 1,4-ジオキサンの公共用水域中の濃度 (表 6-3 から 2000 年度を抜粋)

<table>
<thead>
<tr>
<th>水域</th>
<th>検出地点数/調査地点数</th>
<th>検出数/検体数</th>
<th>検出範囲 (□ g/L)</th>
<th>幾何平均 (□ g/L)</th>
<th>95 パーセンタイル (□ g/L)</th>
<th>検出限界 (□ g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川</td>
<td>AA-C 類型</td>
<td>3/3</td>
<td>7/9</td>
<td>nd-0.61</td>
<td>0.23</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>D, E 類型</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>湖沼</td>
<td></td>
<td>2/4</td>
<td>6/11</td>
<td>nd-0.12</td>
<td>0.060</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>海域</td>
<td></td>
<td>17/26</td>
<td>47/78</td>
<td>nd-160</td>
<td>0.21</td>
<td>4.3</td>
</tr>
</tbody>
</table>

(環境省, 2002a)

- 不検出
- 不検出検体は検出限界の 1/2 の値として幾何平均及び 95 パーセンタイルを算出

また、環境省では 2000 年度に要調査項目の対象物質として 1,4-ジオキサンを測定し、公共用水域（河川、湖沼、海域）及び地下水中濃度を公表している (表 6-5)。その結果、河川 (AA-C 類型) では 50 検体いずれにおいても不検出であった (検出限界 0.4 □ g/L) (環境省, 2002b)。
表 6-5 1.4-ジオキサンの公共用水域中の濃度（要調査項目）

<table>
<thead>
<tr>
<th>水域</th>
<th>検出数/検体数</th>
<th>検出範囲 (g/L)</th>
<th>幾何平均 (g/L)</th>
<th>95 パーセンタイル (g/L)</th>
<th>検出限界 (g/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川</td>
<td>AA-C 類型</td>
<td>0/50 nd</td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td>D、E 類型</td>
<td>3/9 nd-5.7</td>
<td>0.55</td>
<td>5.7</td>
<td>0.4</td>
</tr>
<tr>
<td>湖沼</td>
<td>0/6 nd</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>海域</td>
<td>0/11 nd</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>地下水</td>
<td>0/15 nd</td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
</tbody>
</table>

(環境省, 2002b)
nd: 不検出
不検出検体は検出限界の 1/2 の値として幾何平均及び 95 パーセンタイルを算出

また、化学物質評価研究機構による 2001 年 11 月に実施された多摩川、利根川、荒川、淀川及び筑後川における計 35 地点 (35 検体) の調査結果を表 6-6 に整理する。その結果、AA-C 類型水域での 95 パーセンタイルは 2.9 g/L であった (化学物質評価研究機構, 2002b)。

表 6-6 1.4-ジオキサンの公共用水域中の濃度（3）

<table>
<thead>
<tr>
<th>水域</th>
<th>検出数/検体数</th>
<th>検出範囲 (g/kg)</th>
<th>幾何平均 (g/kg)</th>
<th>95 パーセンタイル (g/kg)</th>
<th>検出限界 (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川 AA-C 類型</td>
<td>26/35</td>
<td>0.27</td>
<td>2.9</td>
<td>0.08</td>
<td></td>
</tr>
</tbody>
</table>

(化学物質評価研究機構, 2002b)
nd: 不検出
不検出検体は検出限界の 1/2 の値として幾何平均及び 95 パーセンタイルを算出

また、1.4-ジオキサンの底質中の濃度については、同様に環境省において経年的に調査されている。その結果を表 6-7に示す (環境省, 2001,2002b)。その傾向として、底質中での検出頻度は減少してきている。

表 6-7 1.4-ジオキサンの底質中の濃度

<table>
<thead>
<tr>
<th>年度</th>
<th>検出数</th>
<th>検出範囲 (g/kg)</th>
<th>検出限界 (g/kg)</th>
<th>幾何平均 (g/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>29/94</td>
<td>5-31.2</td>
<td>5</td>
<td>tr</td>
</tr>
<tr>
<td>1991</td>
<td>12/96</td>
<td>4-24</td>
<td>4</td>
<td>tr</td>
</tr>
<tr>
<td>1992</td>
<td>6/102</td>
<td>18-47</td>
<td>10</td>
<td>tr</td>
</tr>
<tr>
<td>1993</td>
<td>15/93</td>
<td>4-18</td>
<td>4</td>
<td>tr</td>
</tr>
<tr>
<td>1994</td>
<td>13/90</td>
<td>5-7.6</td>
<td>5</td>
<td>1.4</td>
</tr>
<tr>
<td>1995</td>
<td>9/102</td>
<td>7-74</td>
<td>6.5</td>
<td>1.6</td>
</tr>
<tr>
<td>1996</td>
<td>5/108</td>
<td>15-30</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>1997</td>
<td>3/105</td>
<td>11-41</td>
<td>10</td>
<td>1.7</td>
</tr>
<tr>
<td>1998</td>
<td>5/108</td>
<td>16-51</td>
<td>10</td>
<td>1.9</td>
</tr>
<tr>
<td>1999</td>
<td>1/99</td>
<td>9.4</td>
<td>8</td>
<td>1.5</td>
</tr>
<tr>
<td>2000</td>
<td>1/93</td>
<td>10</td>
<td>8</td>
<td>3.5</td>
</tr>
</tbody>
</table>

(環境省, 2001,2002b)
tr: 平均値が検出限界未満であることを示す
c. 水道水中的濃度

1,4-ジオキサンの水道水中濃度については、厚生省において1999年度及び2000年度の厚生科学研究によって調査されている（厚生科学研究, 2000, 2001)。表6-8に1999年度の調査結果を、表6-9に2000年度の結果を整理する。1999年度の調査によると、1,1,1-トリクロロエタンの地下水汚染が認められた地点において高濃度で検出された事例が報告されている。地下水では68検体中65検体で検出され、その平均濃度は4.9 µg/Lと、河川水（同様に測定したものの平均2.5 µg/L）よりも高い結果であった。2000年度の調査では、5つの水道局及び水道企業団の16浄水場において水道原水及び浄水が測定された。その結果、原水と浄水で濃度の差はほとんど見られなかった。また、浄水中濃度平均値の中で最も高い濃度は1.8 µg/Lであった。

表6-8 1,4-ジオキサンの河川水、地下水及び浄水中の濃度

<table>
<thead>
<tr>
<th>区分</th>
<th>検出地点数/ 調査地点数</th>
<th>検出値平均濃度 (µg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>河川水</td>
<td>111/115</td>
<td>2.5</td>
</tr>
<tr>
<td>地下水</td>
<td>65/68</td>
<td>4.9</td>
</tr>
<tr>
<td>泉水</td>
<td>9/9</td>
<td>1.6</td>
</tr>
</tbody>
</table>

（厚生科学研究, 2000）検出限界:不明

表6-9 1,4-ジオキサンの水道原水及び浄水中の濃度

<table>
<thead>
<tr>
<th>水道局/ 水道企業団</th>
<th>浄水場数</th>
<th>検体数</th>
<th>原水</th>
<th>浄水</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>検出範囲 (µg/L)</td>
<td>平均値 (µg/L)</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>6</td>
<td>0.1-0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>12</td>
<td>0.3-1.0</td>
<td>0.7</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>14</td>
<td>nd-9.1</td>
<td>1.7</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>23</td>
<td>nd-1.29</td>
<td>0.42</td>
</tr>
<tr>
<td>E</td>
<td>7</td>
<td>42</td>
<td>nd-0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

（厚生科学研究, 2001）
nd: 不検出
検出限界:不明

d. 食物中の濃度

1,4-ジオキサンの食物中の濃度については、日本食品分析センターによる1997年度の食事からの化学物質暴露量に関する調査報告書によると、45世帯いずれにおいても検出出でなかった（検出限界10 µg/kg）（日本食品分析センター, 1998)。また、1,4-ジオキサンの魚類中濃度に関する調査結果は、調査した範囲では得られなかった。

6.2.2 環境中濃度の推定

a. メッシュ毎の排出量の推計

濃度推定に必要な大気、公共用水域及び塩場の各環境媒体のメッシュ毎の排出量を、化学物
品質排出把握管理促進法に基づく「平成13年度届出排出量及び移動量並びに届出外排出量の集計結果」(経済産業省, 環境省, 2003a)(以下、「2001年度PRTRデータ」という。)をもとに、推定する。

届出排出量については、事業所毎の排出量、事業所の所在地の情報をもとに、メッセージ毎に割り振った。

届出外排出量については、対象業種届出外事業者(首切り)からの排出量が推計されており、その排出量を対象業種の全事業所数から届出事業所数を引いた事業所数をもとにメッセージ毎に割り振るとともに、環境媒体別の排出量を届出排出量の環境媒体別排出割合を用いて推定した。

1,4-ジオキサンの全国における環境媒体別排出量を表6-10に整理した(製品評価技術基盤機構, 2004)。

<table>
<thead>
<tr>
<th>排出区分</th>
<th>大気</th>
<th>水域</th>
<th>土壌</th>
</tr>
</thead>
<tbody>
<tr>
<td>届出</td>
<td>160</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>対象業種届出外</td>
<td>64</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>224</td>
<td>32</td>
<td>0</td>
</tr>
</tbody>
</table>

(製品評価技術基盤機構, 2004)

1) 大気、水域、土壌の排出量は、届出排出量の排出割合と同じと仮定し、推定した。

b. 大気中濃度の推定

6.2.2 aの方法で推定したメッセージ毎の大気への排出量、物理化学的性状及び2001年の気象データをもとに、AIST-ADMER ver.1.0 (産業技術総合研究所, 2003; 東野ら, 2003)を用いて、5kmメッセージ毎の年間平均の大気中濃度を推定する。推定する大気中濃度は、全国各地域(北海道、東北、北陸、関東、中部、東海、近畿、中国、四国、九州、沖縄)のうち、大気への排出密度(2001年度PRTRデータから求めた地域別の大気への排出量/当該地域面積)が最も高い地域の濃度とする。

1,4-ジオキサンの地域別の大気への排出量及びその排出密度を表6-11に示す。1,4-ジオキサンは、中国地域における大気への排出密度が最も大きいため、この地域における大気中濃度を推定した。

推定の結果、中国地域における大気中濃度の年間平均の最大値は、1.8 g/m³であった(製品評価技術基盤機構, 2004)。
表 6-11 1,4-ジオキサンの地域別大気への排出量及び排出密度

<table>
<thead>
<tr>
<th>地域名</th>
<th>大気への排出量合計(トン/年)</th>
<th>地域面積(km²)</th>
<th>大気への排出密度(トン/km²/year)</th>
<th>排出密度順位</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>1.55</td>
<td>83,500</td>
<td>0.0000186</td>
<td>11</td>
</tr>
<tr>
<td>東北</td>
<td>5.59</td>
<td>64,000</td>
<td>0.0000873</td>
<td>10</td>
</tr>
<tr>
<td>北陸</td>
<td>3.53</td>
<td>17,900</td>
<td>0.000197</td>
<td>7</td>
</tr>
<tr>
<td>関東</td>
<td>33.6</td>
<td>32,100</td>
<td>0.000105</td>
<td>3</td>
</tr>
<tr>
<td>中部</td>
<td>7.82</td>
<td>21,000</td>
<td>0.000372</td>
<td>5</td>
</tr>
<tr>
<td>東海</td>
<td>42.4</td>
<td>28,400</td>
<td>0.00149</td>
<td>2</td>
</tr>
<tr>
<td>近畿</td>
<td>27.5</td>
<td>27,200</td>
<td>0.00101</td>
<td>4</td>
</tr>
<tr>
<td>中国</td>
<td>89.7</td>
<td>31,800</td>
<td>0.00282</td>
<td>1</td>
</tr>
<tr>
<td>四国</td>
<td>6.82</td>
<td>18,800</td>
<td>0.000363</td>
<td>6</td>
</tr>
<tr>
<td>九州</td>
<td>4.95</td>
<td>39,900</td>
<td>0.000124</td>
<td>9</td>
</tr>
<tr>
<td>沖縄</td>
<td>0.432</td>
<td>2,270</td>
<td>0.000019</td>
<td>8</td>
</tr>
<tr>
<td>全国</td>
<td>224</td>
<td>378,000</td>
<td>0.000593</td>
<td></td>
</tr>
</tbody>
</table>

(製品評価技術基盤機構, 2004)
1) 全国の面積には都県にまたがる境界未定地域を含む。
10) 太字は大気中濃度を推定した地域を示す。

c. 河川水中濃度の推定

1,4-ジオキサンの 2001 年度 PRTR データ（届出及び届出外排出量）から推定した全国における水域への排出量 23 トン/年のうち、河川への排出量は 14.2 トン/年と推定される。

ここでは、河川への排出量が最も高い事業所に着目し、その分布を河川水中濃度を推定する。推定には PRTR 対象物質簡易評価システム（日本化学工業協会, 2002b）を使用し、対象化学物質の上記事業所における公共用水域への届出排出量、物理化学的性状及び対象河川の流量データを用いた。

推定の結果、1,4-ジオキサンの河川水中濃度は、10 µg/L であった (製品評価技術基盤機構, 2004)。

6.3 水生生物生息環境における推定環境濃度

水生生物が生息する環境の推定環境濃度 (EEC) を、6.2.1 b 及び 6.2.2 c の公共用水域中の濃度から求める。

1,4-ジオキサンの公共用水域中の濃度としては、環境庁における 2000 年度の調査結果は 2 つあり、指定化学物質調査結果（環境省, 2002a）では、3 地点 9 検体中 7 検体で検出され（検出限界: 0.08 µg/L）、その 95 パーセンタイルは 0.61 µg/L であった。また水質汚染防止法を守る 2001 年調査の調査結果（環境省, 2002b）では、AA-C 類型の河川では 50 検体いずれにおいても不検出であった（検出限界: 0.4 µg/L）。さらに、化学物質評価研究機構による 2001 年度の調査結果では、5 河川の AA-C 類型水域において 35 検体中 26 検体で検出され、その 95 パーセンタイルは 2.9 µg/L であった（検出限界: 0.08 µg/L) (化学物質評価研究機構, 2002b)。

また、1,4-ジオキサンの PRTR 対象物質簡易評価システムを用いて河川水中濃度を推定した結果は 10 µg/L であった (製品評価技術基盤機構, 2004)。
1,4-ジオキサンは、年度が新しく測定地点も多い公共用水域中濃度についての測定結果が掲載されている。そこで本評価書では EEC として、それぞれの測定結果の 95 パーセンタイルを比較し、より高い値を用いることが適切であると判断し、化学物質評価研究機構による 2001 年度の測定結果の 95 パーセンタイルである 2.9 □g/L を採用する。

6.4 ヒトへの暴露シナリオ
6.4.1 環境経由の暴露
1,4-ジオキサンの環境経由のヒトへの暴露経路は、主として呼吸からの吸入暴露と飲料水及び食物からの経口暴露と考えられる。

6.4.2 消費者製品経由の暴露
シャンプーや台所用洗剤の成分として使用されるアルキルエーテルサルフェート中に微量副生物として含まれている 1,4-ジオキサンが消費者に直接暴露する可能性が考えられる。その製品あたりの含有量を表 6-12に示した（厚生科学研究, 2000）。

<table>
<thead>
<tr>
<th>製品の種類</th>
<th>製品の数</th>
<th>検出数/検体数</th>
<th>検出範囲 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>シャンプー</td>
<td>6</td>
<td>10/10</td>
<td>0.4-15</td>
</tr>
<tr>
<td>台所用洗剤</td>
<td>3</td>
<td>6/6</td>
<td>0.2-56</td>
</tr>
<tr>
<td>洗濯用液体洗剤</td>
<td>3</td>
<td>3/3</td>
<td>0.5-17</td>
</tr>
</tbody>
</table>

(厚生科学研究, 2000)

しかし、これら 1,4-ジオキサンを含む消費者製品がどのくらいの濃度で用いられ、人に吸収されるかについて、調査した範囲では情報が得られなかった。また、その他に未知の排出源や非点源負荷の可能性も述べられているが、調査した範囲では情報が得られなかったので、それらの暴露を本評価書では考慮しない。

6.5 推定摂取量

a. 環境経由の推定摂取量
本評価書において各経路からの摂取量を推定する際、成人の空気吸入量を 20 m³/人/日、飲料水摂水量を 2 L/人/日、魚類摂食量を 120 g/人/日とした。
推定摂取量の算出は、以下の仮定に従って求めた。
1,4-ジオキサンの大気中の測定濃度としては、環境庁による 2000 年度の調査結果があり、その 95 パーセンタイルは 0.14 □g/m³ であった。1,4-ジオキサンの AIST-ADMER モデルを用いた中国地域の推定大気中濃度の最大値は、1.8 □g/m³ であった。ここでは、調査年度も新しく調査地点も多いことから環境庁による調査結果が適切であると判断し、その 95 パーセンタイルである 0.14 □g/m³ を用いる。
飲料水については、水道水（浄水）を摂取するものとし、ここでは厚生省の 2001 年度の調査
結果から浄水中濃度の平均値の中で最も高濃度であった値1.8 g/L を用いる。

食物については、日本食品分析センターの1997年度の調査結果があるが、いずれも不検出であった（検出限界10 g/kg）。また、魚体内濃度に関する測定結果は入手できなかったため、海域（内湾）に生息する魚類の体内に濃縮されると考えると、環境庁による2000年度の海域中濃度の95パーセンタイル4.3 g/L に生物濃縮係数 (BCF) として0.7 (5.4参照) を乗じた魚体内濃度は、3.0 g/kg となる。よって、本評価書では、食物中濃度の検出限界の1/2 である5 g/kg を用いた場合、摂取量が過大評価となると考え、海域中濃度と BCF から推定した魚体内濃度を用いる。

これらの仮定のもとに推定したヒトでの摂取量は、以下のとおりである。

大気からの摂取量：0.14 (g/m³) × 20 (m³/人/日) = 2.8 (g/人/日)
飲料水からの摂取量：1.8 (g/L) × 2 (L/人/日) = 3.6 (g/人/日)
魚類からの摂取量：4.3 (g/L) × 0.7 (L/kg) × 0.12 (kg/人/日) = 0.36 (g/人/日)

成人的体重を平均50 kg と仮定して、体重1 kgあたりの摂取量を求めると次のようになる。
吸入摂取量：2.8 (g/人/日) / 50 (kg/人) = 0.056 (g/kg/日)
経口摂取量：4.0 (g/人/日) / 50 (kg/人) = 0.080 (g/kg/日)
合計摂取量：0.056 (g/kg/日) + 0.080 (g/kg/日) = 0.14 (g/kg/日)

7. 環境中の生物への影響
7.1 水生生物に対する影響
7.1.1 微生物に対する毒性
1,4-ジオキサンの微生物に対する毒性試験結果を表 7-1に示す。
細菌や原生動物に対する毒性が報告されており、最小の毒性値は、細菌では黒色細菌の増殖阻害を指標とした8日間毒性閾値 (EC8) の575 mg/L (Bringmann and Kuhn, 1976)、原生動物では鞭毛虫類 (Entosiphon sulcatum) の増殖阻害を指標とした72時間毒性閾値 (EC7) の5,340 mg/L であった (Bringmann, 1978)。
表 7-1 1,4-ジオキサンの微生物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>温度 (℃)</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
</table>
| 細菌
Pseudomonas putida
(ジェーティー) | 25 | 16 時間毒性閾値 | 2,700 (n) | Bringmann & Kuhn, 1976, 1977 |
| Photobacterium phosphoreum
(海洋性発光細菌) | 15 | 5 分間 EC_{50}
15 分間 EC_{50}
30 分間 EC_{50} | 610
668
733 (n) | Kaiser & Palabrica, 1991 |
| Microcystis aeruginosa
(藍色細菌) | 27 | 8 日間毒性閾値 | 575 (n) | Bringmann & Kuhn, 1976 |
| 原生動物
Uronema parduczi
(鞭毛虫類) | 25 | 20 時間毒性閾値 | 5,620 (n) | Bringmann & Kuhn, 1980a |
| Chilomonas paramaecium
(鞭毛虫類) | 20 | 48 時間毒性閾値 | > 10,000 (n) | Bringmann & Kuhn, 1980b |
| Entosiphon sulcatum
(鞭毛虫類) | 25 | 72 時間毒性閾値 | 5,340 (n) | Bringmann, 1978 |

(n): 設定濃度
1) 対照区と比較して 3％の影響を与える濃度 (EC_{3})
2) 対照区と比較して 5％の影響を与える濃度 (EC_{5})

7.1.2 藻類に対する毒性

1,4-ジェオキサンの藻類に対する毒性試験結果を表 7-2に示す。

藻類としては、淡水藻類のセレナストラム及びセネタスミスを用いた生長阻害を評価した試験結果が報告されている。生長阻害濃度は580〜5,600 mg/Lの範囲にあった。長期毒性とみなされるNOECは、OECDテストガイドラインに準じたセレナストラムを用いた72時間試験での生長阻害を指標とした580 mg/L(バイオマス)と1,000 mg/L(成長速度)である(環境庁, 1996)。

海産藻類に対する毒性については、調査した範囲内では報告されていない。

表 7-2 1,4-ジェオキサンの藻類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度 (℃)</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
</table>
| 淡水
Selenastrum capricornutum
(緑藻、セラナストラム) | OECD 201 GLP 止水 | 22.9-23.1 | 72 時間 EC_{50}
24-48 時間 EC_{50}
24-72 時間 EC_{50}
72 時間 NOEC
24-48 時間 NOEC
24-72 時間 NOEC | 生長阻害
バイオマス
生長速度
バイオマス
生長速度 | > 1,000
> 1,000
> 1,000
580
580
1,000 (a, n) | 環境庁, 1996 |
| Scenedesmus subspicatus
(緑藻、セネデスミス) | 止水 閉鎖系 | 27 | 8 日間毒性閾値 | 5,600 (n) | Bringmann & Kuhn, 1977a |

(a, n): 被験物質の測定濃度が設定値の20%以内であったので設定濃度により表示。(n): 設定濃度、閉鎖系: 試験容器や水槽にフタ等をしているが、ヘッドスペースはある状態
1) 現学名: Pseudokirchneriella subcapitata
2) 対照区と比較して 3％の影響を与える濃度 (EC_{3})
大字はリスク評価に用いたデータを示す。
7.1.3 無脊椎動物に対する毒性

1,4-ジオキサンの無脊椎動物に対する毒性試験結果を表 7-3に示す。

無脊椎動物に対する1,4-ジオキサンの急性毒性については、淡水種として甲殻類のオオミジンコ及びネコゼミジンコや昆虫類のネッタイシマカ幼生での報告がある。甲殻類の毒性値 (LC₅₀あるいはEC₅₀) はいずれも1,000 mg/L以上であった。最も信頼のある値は、OECDテストガイドラインに準じた試験でのオオミジンコ48時間EC₅₀の1,000 mg/L超である（環境庁, 1996）。

長期毒性としては、OECDテストガイドラインに準じたオオミジンコ21日間繁殖試験やネコゼミジンコ7日間繁殖試験の報告があり、NOECはそれぞれ1,000 mg/L以上（環境庁, 1996）及び625 mg/Lである (Dow, 1995)。また、海産種に対する毒性については、調査した範囲内では報告されていない。

表 7-3 1,4-ジオキサンの無脊椎動物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>サイズ</th>
<th>試験法/方程式</th>
<th>温度 (°C)</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daphnia magna (甲殻類、 [\text{材ミジンコ}])</td>
<td>20-22</td>
<td>286</td>
<td>7.6-7.7</td>
<td>24時間LC₅₀</td>
<td>2070</td>
<td>4,700</td>
<td>10,000 (n)</td>
<td>Bringmann & Kuhn, 1977b</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>ND</td>
<td>8.0±0.2</td>
<td>24時間EC₅₀</td>
<td>6210</td>
<td>8450 > 10,000</td>
<td>1,000 (a, n)</td>
<td>Bringmann & Kuhn, 1982</td>
</tr>
<tr>
<td>OECD 202 GLP 半止水</td>
<td>19.6-20.6</td>
<td>86</td>
<td>7.6-7.8</td>
<td>24時間EC₅₀</td>
<td>> 1,000</td>
<td>> 1,000 (a, n)</td>
<td>環境庁, 1996</td>
<td></td>
</tr>
<tr>
<td>OECD 202 GLP 半止水</td>
<td>19.1-20.5</td>
<td>86</td>
<td>7.2-8.6</td>
<td>24時間EC₅₀</td>
<td>625</td>
<td>1,250 (n)</td>
<td>Dow, 1995</td>
<td></td>
</tr>
<tr>
<td>Ceriodaphnia dubia (甲殻類、ネコミジンコ属(\text{の一一種}))</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>7日間NOEC</td>
<td>ND</td>
<td>ND</td>
<td>Kramer et al., 1983</td>
</tr>
<tr>
<td>Aedes aegypt (昆虫類、 [\text{ミタシラカ}])</td>
<td>22-24</td>
<td>ND</td>
<td>ND</td>
<td>4時間LC₅₀</td>
<td>41,344</td>
<td>Kramer et al., 1983</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ND: データなし, (a, n): 被験生物の測定濃度が設定値の20%以内であったので設定濃度により表示
(n): 設定濃度
太字はリスク評価に用いたデータを示す。

7.1.4 魚類に対する毒性

1,4-ジオキサンの魚類に対する毒性試験結果を表 7-4に示す。
淡水魚としては、ファットヘッドミノー、メダカ、ニジマス及びアメリカナマズに関する信
7.1.5 その他の水生生物に対する毒性

調査した範囲内では、1,4-ジオキサンのその他の水生生物（両生類等）に関する試験報告は得られていない。

7.2 陸生生物に対する影響

7.2.1 微生物に対する毒性

調査した範囲内では、1,4-ジオキサンの微生物（土壌中の細菌や菌類等）に関する試験報告は得られていない。
7.2.2 植物に対する毒性
1,4-ジオキサンの植物に対する毒性に関しては次のようなものが報告されている。
レタスの発芽能力を調べるため、レタス種を寒天天上に30℃で72時間処理した。その結果、EC\textsubscript{50}は16.5 mol/m3 (1450 μg/L) であった (Reynolds, 1989)。

7.2.3 動物に対する毒性
調査した範囲内では、1,4-ジオキサンの動物に関する試験報告は得られていない。

7.3 環境中の生物への影響（まとめ）
環境中の生物に対する1,4-ジオキサンの影響については、比較的多くのデータがあり、致死、遊泳阻害、生（成）長阻害、発芽などを指標に検討が行われている。
微生物に関しては、細菌や原生動物の報告があり、最小の毒性値は、細菌では藍色細菌の増殖阻害を指標とした8日間毒性閾値 (EC\textsubscript{3}) の575 mg/L、原生動物では鞭毛虫類 (Entosiphon sulcatum) の増殖阻害を指標とした72時間 (EC\textsubscript{5}) の5,340 mg/Lである。
藻類の生長阻害試験では、生長阻害のEC\textsubscript{50}は、セレナストラム及びセネデスムスでの報告があり、1,000超〜5,600 mg/Lの範囲である。これらの値はGHS急性毒性有害性区分に該当しない。また、長期毒性とみなされる生長阻害に関する最小のNOECは、セレナストラムでの580 mg/Lである。
無脊椎動物に対する急性毒性は、甲殻類のミジンコ類や昆虫類のネットシマカ幼生での報告があり、いずれもLC\textsubscript{50}は1,000 mg/L以上である (甲殻類についてはGHS急性毒性有害性区分に該当しない)。長期毒性としては、ネコゼミジンコの繁殖試験でのNOECが625 mg/Lの報告がある。
魚類の96時間LC\textsubscript{50}は100超〜9,850 mg/Lの範囲にあり、GHS急性毒性有害性区分に該当しない。長期毒性としては、フットヘッドミノーの32日間の短期生活段階毒性試験において、生存率や成長を指標としたNOECが145 mg/L以上、メダカの成長や生存を指標とした試験でのNOECが100〜3,536 mg/Lの報告がある。
また、海産生物種に対する影響は、信頼できる報告はない。
陸生生物に関しては、レタスの発芽能力を指標とした72時間EC\textsubscript{50}は16.5 mol/m3 (1,450 mg/L) であった。

以上から、1,4-ジオキサンの水生生物に対する急性毒性は、GHS急性毒性有害性区分に該当せず、藻類、甲殻類及び魚類のいずれに対しても有害性を示す可能性は小さいと判断する。得られた毒性データのうち水生生物に対する最小値は、藻類であるセレナストラムの生長阻害を指標した72時間 NOEC (バイオマス) 及び24-48時間 NOEC (生長速度) の580 mg/Lである。

8. ヒト健康への影響
8.1 生体内運命
1,4-ジオキサンの生体内運命に関する試験結果を表8-1に示す。
1.4-ジオキサンは、経口、吸入ともに速やかに吸収され、サルでの経皮経路でも中毒の発生する量が吸収される。ラットに14C-1,4-ジオキサンの10, 100, 1,000 mg/kgを17日間反覆強制経口投与した実験で、投与量の95%が消化管から吸収された（DeRosa et al., 1996）。ラットに50 ppmの濃度で6時間頭部暴露した実験では、48時間後の尿中に7.0 gのジオキサンと21 mgのp-ヒドロキシエトキシ酢酸（HEAA）が検出された。ジオキサンの100%理論量が16 mgであることを考えると、ほぼ完全に吸収されたことになる（DeRosa et al., 1996）。14Cで標識した1,4-ジオキサンの4.0 g/cm²（メタノール溶液、又はスキンローション溶液）をサル（アカゲ、成獣、雌雄）の前腕部皮膚（3-15 cm²）に24時間開放適用し、5日間尿中の14Cを回収分析した試験で、最初の24時間以内の皮膚透過率はメタノール溶液の場合、2.3% 0.4%、スキンローション溶液の場合、3.4% 2.4%であった。尿への排泄のピークは適用後4時間以内であった（Marzulli et al., 1981）。

SDラットに、1,4-ジオキサンの1～7 mg/kgを腹腔内投与した実験で、主に血液、肝臓、腎臓、脾臓、結腸に分布するが、徐々に排泄される。肝臓への分布は吸入よりも経口投与の方が約2.5倍多い。また、肝臓での巨大分子との結合はないと報告されている（DeRosa et al., 1996）。ラットにラベルした1,4-ジオキサンの10, 100, 1,000 mg/kgを単回経口投与した実験では、それぞれ99%, 85%, 75%が尿中に排泄されており、呼気中には0.5%, 5%, 23%で、糞中には1～2%であった（Young et al., 1978）。

1,4-ジオキサンの代謝産物はほとんどがHEAAで、他の代謝産物としてジェリコール酸、シュウ酸である（Young et al., 1978）。HEAAへの中間体として1,4-ジオキサン-2-オンが考えられているが、速い速度でHEAAに加水分解されるので分析の条件で検出されない場合がある（DeRosa et al., 1996）。

表 8-1 1,4-ジオキサンの生体内動態

<table>
<thead>
<tr>
<th>動物種</th>
<th>投与条件</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット SD</td>
<td>強制経口 17日間</td>
<td>10, 100, 1,000 mg/kg/日</td>
<td>95%が消化管から吸収。</td>
<td>DeRosa et al., 1996</td>
</tr>
<tr>
<td>ラット</td>
<td>吸入単回</td>
<td>50 ppm 6時間</td>
<td>吸収：48時間後の尿中に7.0 gのジオキサンと21 mgのp-ヒドロキシエトキシ酢酸（HEAA）が検出された。吸収率はほぼ100%。</td>
<td>DeRosa et al., 1996</td>
</tr>
<tr>
<td>サル（アカゲ）</td>
<td>経皮</td>
<td>14Cで標識 1年後未部皮膚（前腕部）</td>
<td>4.0 µg/cm²（皮膚接触面積は3-15 cm²）</td>
<td>吸収：媒体がメタノールの場合： 皮膚浸透率 (%) 2.3% 0.4%。 媒体がスキンローションの場合： 皮膚浸透率 (%) 3.4% 2.4%。 排泄：尿への排泄ピークは適用後4時間以内。</td>
</tr>
<tr>
<td>ラット SD</td>
<td>腹腔内 一部の実験で 14Cで標識 50 mCi 単回投与</td>
<td>100, 200, 300, 400 mg/100g</td>
<td>尿中に変化せずに排泄されたジオキサンの量</td>
<td>Woo et al., 1977</td>
</tr>
<tr>
<td>95-130 g</td>
<td></td>
<td></td>
<td>投与量 (mg/100g)</td>
<td>排泄量 (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300 mg/100gの無標識ジオキサン+50 mCiの14C標識ジオキサンの投与</td>
<td>代謝物の排泄は投与後20から28時間後で最大、48時間後に不検出</td>
</tr>
<tr>
<td>動物種</td>
<td>投与条件</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>-----</td>
</tr>
</tbody>
</table>
| ヒト | 吸入
 (全身暴露)
7.5時間 | 1.6 ppm | 暴露後の尿中のD-ヒドロキシエチルエン酸
(HEAA)とジオキサンの濃度
それそれぞれ414[216]mol/Lと3.5[1.2]mol/L
1.6 ppmのジオキサン気体では、ヒト体内で速やかにHEAAに代謝され、代謝の飽和は起こらない。 | Young et al., 1976 |
| 男性 | 吸入
 (全身暴露)
6時間 | 50 ppm | 吸収・分布：
6時間の暴露で吸収されたジオキサン量
5.4[1.1]mg/kg、又は76.1[15.1]mg/時間
血漿中のジオキサン濃度曲線
暴露開始後急速に上昇し、稍許時間後にほぼ平坦、暴露終了後は検出上限界まで直線的に減少
血漿中のジオキサン濃度
半減期は59[7]分
血漿中のHEAA濃度
約7時間でピーク、その後、明らかに直線性で減少。暴露後のHEAA濃度はジオキサンの濃度より高い
代謝、排泄：
排泄全ジオキサンの90％が暴露(0-6時間)の尿中に回収、12時間後に不検出
尿中のジオキサンの半減期は48[17]分
全投与量の99％以上がHEAAとして尿中に排泄。
全HEAAの47％が0-6時間に排泄、24時間後に検出、尿中のHEAAの半減期は2.7[0.5]時間
糸球体の通過速度の平均として、たたックレアチン・クリアランスは124mL/min
HEAAの腎クリアランスは121mL/分、
ジオキサンの腎クリアランスは0.34mL/分、
ジオキサンの代謝クリアランスは75mL/分
その他：
50 ppmジオキサンを8時間/日で反復暴露した場合の血漿中ジオキサン濃度をシミュレーション
血漿中ジオキサンの最大濃度は単回暴露後の2.165μg/mL、最小濃度は次の暴露前の0.00013μg/mL
血漿中HEAA濃度の最大値と最小値は実験開始前の8.5時間と24時間、それらのHEAA濃度は単回暴露後の後で、それぞれ10.08と0.27μg/mL、反復暴露の後では10.11と0.27μg/mL
従って、シミュレーション結果より、ジオキサンもHEAAも反復暴露で蓄積されない | Young et al., 1977 |
| ラット SD 雄 | 14Cで標識
単回経口
(強制) | 1000 mg/kg | 24時間の尿中代謝物
約85％はHEAAで、その他には未変化のジオキサンの検出 | Braun & Young, 1977 |
| ラット SD 雄 | 一部の実験で
14Cで標識
2.16 mCi/mmole
腹腔内
単回投与 | 3 g/kg | ラットにPBを各検討後、3 g/kgのジオキサンを腹腔内投与
尿の代謝排泄物(p-dioxane-2-one)の量が著しく増加
この結果はジオキサンの代謝にP448よりP450シトクロムが優位に関与していると考察
3タイプの誘発物質はPB、PCB、MCの順で効果大 | Woo et al., 1978 |
| PB-PKモデル計算 | PB-PKモデルによる計算
空気中で740-3,700ppb、または飲料水中20,000-120,000ppbのジオキサン連続摂取は、発がん率が増加 | Reitz et al., 1990 |

-20-
<table>
<thead>
<tr>
<th>動物種</th>
<th>投与条件</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット SD 雄</td>
<td>強制経口投与</td>
<td>単回: 10, 100, 1000 mg/kg</td>
<td>主要な排出ルートは尿、その他はジオキサンや二酸化炭素（14CO2）の形で呼気に排出、排出量は尿よりかなり少なく、糞よりは大</td>
<td>Young et al., 1978</td>
</tr>
<tr>
<td></td>
<td>反復(24時間間隔で17日間投与)</td>
<td>単回経口投与: 10, 1000 mg/kg</td>
<td>1) 単回経口投与
10 mg/kg
14Cの回収率: 98.74%, 呼気中のジオキサン: 14Cの回収率 0.43%
100 mg/kg
14Cの回収率: 85.52%, 呼気中のジオキサン: 14Cの回収率 4.69%
1000 mg/kg
14Cの回収率: 75.74%, 呼気中のジオキサン: 14Cの回収率 25.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>反復経口投与</td>
<td>2) 反復経口投与
10 mg/kg
尿中の14Cの回収率: 98.87%, 呼気中のジオキサンの回収率: 1.33%, 呼気中の14CO2: 4.17%
100 mg/kg
尿中の14Cの回収率: 82.32%, 呼気中のジオキサンの回収率: 8.86%, 呼気中の14CO2: 6.95%</td>
<td></td>
</tr>
<tr>
<td>ラット SD 雄</td>
<td>静脈内注射</td>
<td>単回: 3, 10, 30, 100, 300, 1000, 1,000 mg/kg</td>
<td>3 mg/kg 血漿濃度-時間曲線は直線性、半減期は1.1時間, 血漿クリアランス: 3.33 mL/分
10 mg/kg 血漿濃度-時間曲線は直線性、半減期は1.1時間, 血漿クリアランス: 2.88 mL/分, 腎臓クリアランス: 0.032 mL/分, 肺クリアランス: 0.032 mL/分, 代謝クリアランス: 2.82 mL/分
1000 mg/kg 血漿クリアランス: 0.25 mL/分, 腎臓クリアランス: 0.029 mL/分, 肺クリアランス: 0.055 mL/分, 代謝クリアランス: 0.17 mL/分
血漿クリアランスと肺と腎臓のクリアランスの差から計算した代謝クリアランスの減少はジオキサンをHEAAに代謝する許容量の飽和による。</td>
<td>Young et al., 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>血漿クリアランスと腎臓のクリアランスの差から計算した代謝クリアランスの減少はジオキサンをHEAAに代謝する許容量の飽和による。</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>尿中に排泄されたジオキサンは 10 mg/kg 投与で 4.0%, 1000 mg/kg 投与で 10.8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>尿と呼気に排泄されたジオキサンの全量は 10 mg/kg 投与で 5.0%, 1000 mg/kg 投与で 38%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 mg/kg の投与で 92%が、1000 mg/kg の投与では 60%が尿中にHEAAとして排泄。</td>
<td></td>
</tr>
</tbody>
</table>
8.2 疫学調査及び事例

1,4-ジオキサンの疫学調査及び事例を表8-2に示す。

1,4-ジオキサンは、ヒトの皮膚、眼、気道粘膜に対し刺激性を有する。1,4-ジオキサンは、吸入、皮膚暴露、経口暴露により速やかに吸収され、53.9ppm (0.19 mg/m³) の6時間の吸入で尿中に1,2-ヒドロキシエトキシ酢酸を代謝物として99.3%が排泄され、代謝が飽和状態に達すると未変化体が排泄される (0.7%)。飽和に達する暴露量は1.2 mg/kgに推定されている (Young et al., 1977)。また、1.6 ppmで7.5時間の吸入で尿中の代謝物である1,2-ヒドロキシエトキシ酢酸と未変化体のジオキサンの比率は118:1で、飽和に達しない濃度ではほとんどが代謝されることが明らかにされている (Young et al., 1976)。

1,4-ジオキサンの中毒事例としては、21才の男性が本物質で手を洗浄し(期間不明)、死亡した例が報告されており、死因は脳、肝臓、腎臓の障害で本物質との関連があるとされている (Rutherford, 1959)。

1,4-ジオキサンの職業暴露としては、1,4-ジオキサン使用の作業者で、死亡した男性、5名(29、33、29、38及び30歳)に(暴露量、期間不明)、剖検により出血性腎炎が、組織学的には腎臓の出血と壊死、肝臓の壊死がみられている (Barebar, 1934)。古いデータであるが、反復投与毒性の項で示すように、動物でのデータと非常に類似の変化がみられている。

ジオキサン製造部門100名、ジオキサン処理部門65名の男性についての死因調査を行った結果、製造部門での死因の内訳は胃がん1例、肺癌1例、胃の出血1例、心血管性不全3例、心不全1例、心機能塞2例、肝硬変1例であった。またジオキサン処理部門では全死亡者5例のうち心筋梗塞1例、事故死1例、感電による心停止1例、悪性縦隔腫瘍1例、腎の細網繊細死1例であった。本物質の当該条件下の暴露(暴露濃度25 ppm以下、製造部門で平均22 ppm、処理部門で61 ppm)による暴露期間とがんによる死亡率との相関性は認められなかったと報告されている (Patricia et al., 1978)。
表 8-2 1,4-ジオキサンの疫学調査及び事例

<table>
<thead>
<tr>
<th>対象集団</th>
<th>暴露状況</th>
<th>暴露量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>男女合わせて12名</td>
<td>15分間</td>
<td>200 ppm</td>
<td>被験者の目、鼻、喉に刺激性</td>
<td>Leslie et al., 1946</td>
</tr>
<tr>
<td>化学工業会社、5名</td>
<td>7.5時間</td>
<td>1.6 ppm</td>
<td>被験者の尿中のジオキサンとα-ヒドロキシエトキシ酢酸（HEAA）の比率: 118対1</td>
<td>Young et al., 1976</td>
</tr>
<tr>
<td>化学工業会社、健康な白人男性、4名</td>
<td>6時間</td>
<td>53.9 ppm (0.19 mg/m³)</td>
<td>尿中にはα-エトキシ酢酸が代謝物として排泄される（99.3%）、代謝が飽和状態に達すると未変化体が排泄される(0.7%)。</td>
<td>Young et al., 1977</td>
</tr>
<tr>
<td>1,4ジオキサン使用の作業者、死亡した男性、5名 (29、33、29、38及び38歳)</td>
<td>不明</td>
<td>不明</td>
<td>死亡原因は、出血性腎炎。組織学的検査では腎臓の出血と壊死、肝臓の壊死</td>
<td>Bareber, 1934</td>
</tr>
<tr>
<td>メキシコ生まれ、男、21歳</td>
<td>液体ジオキサンを手の洗浄に使用</td>
<td>部屋の平均濃度 470 ppm (208-650 ppm)</td>
<td>アルコールの飲酒歴があるが、アルコール中毒はみられず、死因としてジオキサン暴露と結論</td>
<td>Rutherford, 1959</td>
</tr>
<tr>
<td>化学工業会社、ジオキサン製造部門100名、ジオキサン処理部門65名 (全165名中161名；白人が1名；黒人が1名；東洋人)、男性</td>
<td><25 ppm</td>
<td>1954年から1975年の間、ジオキサン製造部門で死亡した全7例の死因の内訳 (重複を含む)</td>
<td>Patricia et al., 1978</td>
<td></td>
</tr>
</tbody>
</table>

8.3 実験動物に対する毒性

8.3.1 急性毒性

経口、経皮投与及び吸入で行われている1,4-ジオキサンの急性毒性試験結果を表 8-3に示す (Argus et al., 1973; Kitchin et al., 1990; Pawar et al., 1978)。

実験動物に対する1,4-ジオキサンの経口投与による急性毒性試験のLD₅₀は、ラットで5,170~7,300 mg/kg、マウスでは5,700 mg/kgであった。毒性症状としては、肝障害を中心としたもので、肝臓重量の増加と肝臓のオルニチンデカルボキシラーゼ活性の増加、シトクロムP450量の増加などがみられている。
表 8-3 1,4-ジオキサンの急性毒性試験結果

<table>
<thead>
<tr>
<th></th>
<th>マウス</th>
<th>ラット</th>
<th>ウサギ</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口LD₅₀</td>
<td>5,700 mg/kg</td>
<td>5,170 - 7,300 mg/kg</td>
<td>2,000 mg/kg</td>
</tr>
<tr>
<td>吸入LC₅₀</td>
<td>18,000 ppm (65,000mg/m³)/2h</td>
<td>12,780 ppm (46,000 mg/m³)/2h</td>
<td>ND</td>
</tr>
<tr>
<td>経皮LD₅₀</td>
<td>> 8,000 mg/kg</td>
<td>2,100 mg/kg</td>
<td>7,600 mg/kg</td>
</tr>
<tr>
<td>皮下LDLo</td>
<td>ND</td>
<td>ND</td>
<td>1,500 mg/kg</td>
</tr>
</tbody>
</table>

ND : データなし

8.3.2 刺激性及び腐食性

ウサギの皮膚に515 mgの1,4-ジオキサンを適用した開放ドライズ試験で中等度の刺激性がみられるが、ラットでは8,300 mg/kgの用量でも刺激性は見られていない(Clark et al., 1984)。

また、ウサギ及びモルモットに対し、1,4-ジオキサンは眼刺激性を有することが報告されている。

さらに、2,000 ppm以上の吸入実験で、マウス、モルモット、ネコに対し、1,4-ジオキサンは鼻、肺に刺激性を有する (ACGIH, 1991)。

8.3.3 感作性

試験の詳細は不明であるが、モルモットを用いたマキシマイゼーション試験で1,4-ジオキサンは陰性と報告されている。

8.3.4 反復投与毒性

経口、腹腔内、経皮投与及び吸入による1,4-ジオキサンの反復投与毒性試験結果を表 8-4に示す。

1,4-ジオキサンの標的器官は、肝臓、腎臓及び肺である。最も信頼できる長期の経口投与(飲水)による試験としては、6〜8週齢のShermanラットに1,4-ジオキサンの0、0.01、0.1、1.0%（雄：0、9.6、94、1,015 mg/kg/日相当、雌：0、19、148、1,599 mg/kg/日相当）を2年間飲水投与した試験で、0.01%群では影響はみられないが、0.1%以上の群で肝細胞の変性及び壊死、肝細胞過形成、尿細管上皮の変性、再生が、1%群の雌雄では、試験開始4ヵ月間での生存率が有意に減少し、試験開始2日間で体重が有意に低下を示し、投与期間中に体重増加抑制、肝臓の絶対・相対重量が有意に増加している。本実験でのNOAELは雌雄とも0.01% (9.6 mg/kg/日相当) となっている (Kociba et al., 1974)。

吸入暴露では、ラットを111 ppmに7時間/日、週5日間で2年間暴露した試験で、何ら影響がみられないとの報告がある (Torkelson et al., 1974)。

以上から、経口投与でのNOAELはラットへの2年間の飲水投与による試験 (Kociba et al., 1974) における肝細胞の変性及び壊死、肝細胞過形成、尿細管上皮の変性、再生を指標とした0.01 % (9.6 mg/kg/日相当)である。
<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット</td>
<td>飲水</td>
<td>11週</td>
<td>10, 1,000 mg/kg/日</td>
<td>影響なし</td>
<td>Stott et al., 1981</td>
</tr>
<tr>
<td>ラット Sherman 雄雌 6-8週齢 60匹/群</td>
<td>飲水</td>
<td>2年間</td>
<td>0, 0.01, 0.1, 1.0% (雄: 0, 9.6, 94, 1,015 mg/kg/日相当, 雌: 0, 19, 148, 1,599 mg/kg/日相当)</td>
<td>0.01%: 影響なし 0.1%以上: 肝細胞の変性と壊死、肝細胞過形成、尿細管上皮の変性及び再生 1%: 試験開始4か月間で生存率有意に減少、試験開始2日間で体重有意に減少（低値を示した）、投与期間中に体重増加抑制肝腫の総対・相対重量が有意に增加 NOAEL: 0.01% (9.6 mg/kg/日相当)</td>
<td>Kociba et al., 1974</td>
</tr>
<tr>
<td>ラット Wistar 雌雄 週齢不明 288匹 (対照群は192匹)</td>
<td>吸入</td>
<td>2年間7時間/日 5日間/週</td>
<td>0, 111 ppm (0.4 mg/L)</td>
<td>111 ppm: 雄 影響なし 雌 影響なし</td>
<td>Torkelson et al., 1974</td>
</tr>
<tr>
<td>モルモット 雄 週齢不明 22匹 (対照群は10匹)</td>
<td>飲水</td>
<td>23か月間</td>
<td>無処置対照群 0.5-2% (総投与量588-635g)</td>
<td>無処置対照群: 雄: 1例で肺の気管支上皮過形成, 4例で肺胞の細胞浸潤 投与群: 雄: 9例で肺の気管支周囲及び気管支内上皮過形成と炎症、細胞浸潤</td>
<td>Hoch-Ligeti & Argus, 1970</td>
</tr>
<tr>
<td>マウス A/J 雌雄 6-8週齢 16匹/群 (無処置対照群は雄136匹、雌131匹)</td>
<td>腹腔内または経口</td>
<td>8週間3回/週</td>
<td>総投与量 腹腔内: 0(媒体対照), 4,800, 12,000, 24,000 mg/kg 経口: 0(無処置対照), 24,000 mg/kg</td>
<td>腹腔内: 4,800 mg/kg: 雄 影響なし 雌 影響なし 12,000 mg/kg: 雄 影響なし 24,000 mg/kg: 雄 影響なし 雌 影響なし 経口: 24,000 mg/kg: 雄 影響なし 雌 影響なし</td>
<td>Stoner et al., 1986</td>
</tr>
<tr>
<td>マウス A/J 雄 6-8週齢 30匹/群</td>
<td>腹腔内</td>
<td>8週間3回/週</td>
<td>総投与量 (媒体対照, 無処置対照) 400, 1,000, 2,000 mg/kg</td>
<td>400 mg/kg: 雄 影響なし 1,000 mg/kg: 雄 影響なし 2,000 mg/kg: 雄 影響なし</td>
<td>Maronpot et al., 1986</td>
</tr>
<tr>
<td>マウス Swiss</td>
<td>経皮</td>
<td>60週間3回/週</td>
<td>0.2 mg</td>
<td>0.2 mg/kg: 雄 影響なし</td>
<td>King et al., 1973</td>
</tr>
</tbody>
</table>

-25-
8.3.5 生殖・発生毒性

報告数は少ないが、1,4-ジオキサンの生殖・発生毒性試験結果を表8.5に示す。

雌ラットに0、0.25、0.5、1.0 mL/kg/日 (0、258、516、1,033 mg/kg/日)の1,4-ジオキサンを妊娠6日目から15日目まで10日間強制経口投与した試験で、最高用量で母体重の体重増加抑制及び胎児の体重減少、胸骨骨化率の低下がみられたが、奇形は認められていない (Giavini et al., 1985)。本評価書では本実験でのNOAELは、親動物及び児動物とも516 mg/kg/日と判断した。

その他、雌SDラットを用い、1,4-ジオキサンの3.5%を含む1,1,1-トリクロロエタンで妊娠6日目から15日目まで吸入暴露した試験で影響なしとの報告があるが、データの詳細が不明のため1,4-ジオキサンの生殖・発生毒性としては信頼性がない。

表8.5 1,4-ジオキサンの生殖・発生毒性試験結果

<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット 雌</td>
<td>強制経口</td>
<td>妊娠6-15日</td>
<td>0、0.25、0.5、1.0 mL/kg/日 (0、258、516、1,033 mg/kg/日)</td>
<td>F₀: 0.25 mg/kg/日: 影響なし 0.5 mg/kg/日: 影響なし 1.0 mL/kg/日: 体重増加抑制 LOAEL: 1.0 mL/kg/日 (1,033 mg/kg/日) NOAEL: 0.5 mL/kg/日 (516 mg/kg/日) (本評価書の判断)</td>
<td>Giavini et al., 1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F₁: 0.25 mg/kg/日: 影響なし 0.5 mg/kg/日: 影響なし 1.0 mL/kg/日: 生存胎児体重の減少、胸骨の化骨遅延 LOAEL: 1.0 mL/kg/日 (1,033 mg/kg/日) NOAEL: 0.5 mL/kg/日 (516 mg/kg/日) (本評価書の判断)</td>
<td></td>
</tr>
</tbody>
</table>

8.3.6 遺伝毒性

1,4-ジオキサンの遺伝毒性試験結果を表8.6に示す。

in vitro試験としては、ネズミチフス菌での復帰突然変異試験 (Haworth et al., 1983; Khudoley
et al., 1987; Morita and Hayashi, 1998; Stotto et al., 1981)、チャイニーズハムスター卵巣（CHO）細胞を用いた染色体異常試験（Galloway et al., 1987）、マウスリンフォーマ試験（McGregor et al., 1991; Morita and Hayashi, 1998）、大腸菌を用いたDNA修復試験（Hellmer and Bolcsfoldi, 1992）で代謝活性化の有無にかかわらず陰性と報告されている。CHO細胞を用いた姉妹染色分体交換（SCE）試験では、代謝活性化した場合は陰性で、活性化しない場合に弱く陽性を示すと報告されている（Galloway et al., 1987）。また、肝臓の初代培養細胞を用いた不定期DNA合成（UDS）試験でも陰性である（Stotto et al., 1981）。BALB 3T3細胞を用いた形質転換試験では、代謝活性化しない場合に陽性の結果が報告されている（Sheu et al., 1998）。

in vivo試験では、マウスを用いた小核試験で結果に相違がみられている。雄のC57BL-6マウスに900-3,600 mg/kgを経口投与した場合、雌のC57BL-6マウスに5,000 mg/kgを経口投与した場合、陽性の結果が得られている（Mirkova, 1994）。しかし、同様の二つの小核試験では陰性と報告されている（McFee et al., 1994; Tinwell & Ashby, 1994）。また、雄のF344ラットを用いたUDS試験（Goldsworthy et al., 1991）、ショウジョウバエを用いた伴性劣性致死試験（Yoon et al., 1985）ではいずれも陰性の結果が報告されている。SDラットを用いたDNA合成、DNA修復試験では高用量（1,000 mg/kg）で陽性と報告されている（Stott et al., 1981）。

以上から、in vitro試験としては、ネズミチフス菌での復帰突然変異試験、CHO細胞を用いた染色体異常試験、マウスリンフォーマ試験、大腸菌を用いたDNA修復試験で代謝活性化の有無にかかわらず陰性であり、CHO細胞を用いた姉妹染色分体交換試験では、代謝活性化した場合は陰性で、活性化しない場合に弱く陽性を示す。また、肝臓の初代培養細胞を用いた不定期DNA合成（UDS）試験でも陰性である。in vivo試験では、マウスを用いた二つの小核試験では陰性と報告されている。その他、雄のF344ラットを用いたUDS試験、ショウジョウバエを用いた伴性劣性致死試験ではいずれも陰性の結果が報告されている。これらの結果から、1,4-ジオキサンは遺伝毒性を示さないと判断する。

<table>
<thead>
<tr>
<th>試験系</th>
<th>試験材料</th>
<th>処理条件</th>
<th>用量 (µg/plate)</th>
<th>結果 a), b)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>in vitro</td>
<td>復帰突然変異試験</td>
<td>ネズミチフス菌 T9A8 T100 TA1530 TA1535 TA1537</td>
<td>Fluctuation test</td>
<td>- -</td>
<td>Khudoley et al., 1987</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ネズミチフス菌 T9A8 T100 TA1535 TA1537</td>
<td>ブレインキュベーション法(ラット及びハムスターS9)</td>
<td>100-1,000</td>
<td>- -</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ネズミチフス菌 T9A8 T100 TA1535 TA1537</td>
<td>ND</td>
<td>5.17-10³</td>
<td>- -</td>
</tr>
<tr>
<td>試験系</td>
<td>試験材料</td>
<td>処理条件</td>
<td>用量 (µg/plate)</td>
<td>結果 a), b)</td>
<td>文献</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>ネスミチフス菌 TA98 TA100 TA1535 TA1537</td>
<td>プレート法及びプレインキュベーション法</td>
<td>156-5,000 156-5,000 156-5,000 156-5,000</td>
<td>- -</td>
<td>- -</td>
<td>Morita & Hayashi, 1998</td>
</tr>
<tr>
<td>大腸菌 WP2(pKM101) WP2uvrA(pKM101)</td>
<td></td>
<td>156-5,000 156-5,000</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>不定期 DNA合成試験</td>
<td>ラット初代肝細胞</td>
<td>ND</td>
<td>10⁻⁷-1 M</td>
<td>-</td>
<td>Stott et al., 1981</td>
</tr>
<tr>
<td>酵母を用いた異数性の検出 Saccharomyces cerevisiae, D61,M</td>
<td>28, 4h 処理し、氷中で 17h 保存し、28, 4.5h 振とう処理。</td>
<td>1.48-4.75</td>
<td>-</td>
<td>Zimmermann et al., 1985</td>
<td></td>
</tr>
<tr>
<td>形質転換試験 BALB/3T3 クローン A31-1-1</td>
<td>48 時間処理、1 回目 48 時間処理、2 回目 48 時間処理、3 回目 13 日間処理</td>
<td>0.25-2.0 0.5-4.0 0.5-4.0 0.25-2.0 1,250-5,000</td>
<td>+ (2mg/mL) + (2 及び 3mg/mL) + (2 及び 4mg/mL) + (0.5 及び 2mg/mL)</td>
<td>Sheu et al., 1998</td>
<td></td>
</tr>
<tr>
<td>染色体異常試験 CHO-W-B1 細胞</td>
<td>-S9mix 10.5h 処理 +S9mix 2h 処理</td>
<td>1,050-10,500 1,050-10,500</td>
<td>-</td>
<td>Galloway et al., 1987</td>
<td></td>
</tr>
<tr>
<td>CHO-K1 細胞</td>
<td>5 時間処理-18 時間回復 20 時間処理-24 時間回復 44 時間処理-0 時間回復 5 時間処理-18 時間回復 5 時間処理-42 時間回復</td>
<td>1,250-5,000(µg/mL) 1,250-5,000 1,250-5,000 1,250-5,000 1,250-5,000</td>
<td>-</td>
<td>Morita & Hayashi, 1998</td>
<td></td>
</tr>
<tr>
<td>SCE 試験 CHO-W-B1 細胞</td>
<td>-S9mix 約 25h 処理 +S9mix 2h 処理</td>
<td>1,050〜10,500 1,050〜10,500</td>
<td>+ (10,500)</td>
<td>Galloway et al., 1987</td>
<td></td>
</tr>
<tr>
<td>CHO-K1 細胞</td>
<td>3 時間処理-23 時間回復 26 時間処理</td>
<td>1,250 〜 5,000(µg/mL) 1,250 〜 5,000</td>
<td>-</td>
<td>Morita & Hayashi, 1998</td>
<td></td>
</tr>
<tr>
<td>試験系</td>
<td>試験材料</td>
<td>处理条件</td>
<td>用量 (µg/plate)</td>
<td>結果 a), b)</td>
<td>文献</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>----------------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>DNA 修復試験</td>
<td>E. coli K-12 343/113に由来した菌株で、343/636 株のgenotypeは、uvrB'/recA'/lac と343/591 株uvrB'/recA'/lac' (genotype)を使用している。(Mohn et al., 1984)</td>
<td>343/636 と343/591 株培養液の1:10 での混合液を、試験箇所にし、試験物質 100 µL、菌液 100 µL、S9mix、500 µL、37℃で90分インキュベートして、ラクトース検出用培地でコロニー形成</td>
<td>～ 1,150</td>
<td>- -</td>
<td>Hellmer & Bolesfoldi, 1992</td>
</tr>
<tr>
<td>マウスリンファンマール試験</td>
<td>L5178Y 細胞</td>
<td>4 時間処理</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td>McGregor et al., 1991</td>
</tr>
<tr>
<td></td>
<td>L5178Y 細胞</td>
<td>3 時間処理</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td>Morita & Hayashi, 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 時間処理</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 時間処理-2%S9 濃度</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 時間処理-5%S9 濃度</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>in vitro 小核試験</td>
<td>CHO-K1 細胞</td>
<td>5 時間処理-42 時間回復</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td>Morita & Hayashi, 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44 時間処理-0 時間回復</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 時間処理-42 時間回復</td>
<td>1,250 ～ 5,000 (µg/mL)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>マウスの肝臓を用いた小核試験</td>
<td>雄, CD-1 マウス(7週齢)の肝細胞</td>
<td>マウスに経口投与し、投与 1 日目に肝臓の 2/3 を切除し、投与 6 日目に肝細胞を採取する</td>
<td>1,000 ～ 3,000mg/kg (2,000mg/kg 以上)</td>
<td>+</td>
</tr>
<tr>
<td>in vivo マウスの骨髄細胞を用いた小核試験</td>
<td>マウス、CBA の雄</td>
<td>1 回強制経口投与後-24 時間目に塗抹標本を作製</td>
<td>ギムザ染色</td>
<td>1,800mg/kg</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>アクリジンオレンジ染色</td>
<td>1,800mg/kg</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>C57Bl6 の雄</td>
<td>1 回強制経口投与後-24 時間目に塗抹標本を作製</td>
<td>アクリジンオレンジ染色</td>
<td>3,600mg/kg</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>マウス C57Bl6 の雌雄</td>
<td>4 日間連続強制経口投与後-24, 48 時間目に塗抹標本を作製</td>
<td>24 時間解剖、雄 900 ～ 3,600 mg/kg</td>
<td>+</td>
<td>Mirkova, 1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,600 mg/kg</td>
<td>+ (3,600mg/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24 時間解剖、雌 450 ～ 3,600mg/kg</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,600mg/kg</td>
<td>+ (3,600mg/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 時間解剖、雄 5,000 mg/kg</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3,600mg/kg</td>
<td>+ (5,000mg/kg)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48 時間解剖、雌 5,000 mg/kg</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5,000mg/kg</td>
<td>+ (5,000mg/kg)</td>
<td></td>
</tr>
<tr>
<td>試験系</td>
<td>試験材料</td>
<td>処理条件</td>
<td>用量 (µg/plate)</td>
<td>結果a), b)</td>
<td>文献</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>----------</td>
<td>----------------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>マウス BALB/c の雄</td>
<td>マウス, 雄, B6C3F1</td>
<td>1 回強制経口投与後, 24 時間目に塗抹標本を作製</td>
<td>3,600 mg/kg</td>
<td>+ (3,600 mg/kg)</td>
<td></td>
</tr>
<tr>
<td>マウスの骨髄細胞を用いた小核試験</td>
<td>マウス, 雄, B6C3F1</td>
<td>腹腔内投与, 単回投与, 三日間連続投与</td>
<td>5,000 mg/kg</td>
<td>-</td>
<td>McFee et al., 1994</td>
</tr>
<tr>
<td>マウスの末梢血を用いた小核試験</td>
<td>ICR マウス(雄)</td>
<td>強制経口投与後, 24-48 時間目に塗抹標本を作製</td>
<td>0, 1,000, 2,000, 3,000 mg/kg</td>
<td>-</td>
<td>Morita & Hayashi, 1998</td>
</tr>
<tr>
<td>伴性劣性致死試験</td>
<td>ショウジョウバエ Carton-S 雄, Basc, 雄</td>
<td>給餌</td>
<td>35,000 (ppm)</td>
<td>-</td>
<td>Yoon et al., 1985</td>
</tr>
<tr>
<td>ラットの肝での DNA 損傷 (アルカリ溶出法)</td>
<td>ラット, 雄, SD/CD 種</td>
<td>2 回投与 (解剖の 21 及び 4 時間前)</td>
<td>0, 168, 840, 2,550, 4,200 mg/kg</td>
<td>+ (2,550, 4,200 mg/kg)</td>
<td>Kitchin et al., 1990</td>
</tr>
<tr>
<td>DNA 合成</td>
<td>ラット, SD, 雄</td>
<td>強制経口, 1 回投与</td>
<td>10, 100, 1,000 mg/kg</td>
<td>-</td>
<td>Stott et al., 1981</td>
</tr>
<tr>
<td>DNA 修復</td>
<td>ラット, SD, 雄</td>
<td>強制経口, 1 回投与</td>
<td>1,000 mg/kg</td>
<td>+ (1,000 mg/kg のみで, 溶剤対照と比較し, 肝臓の DNA 合成が有意差を示し 1.5 倍増加)</td>
<td>Stott et al., 1981</td>
</tr>
<tr>
<td>不定期 DNA合成試験</td>
<td>ラット, F344, 雄</td>
<td>飲水, 8 日間連続</td>
<td>1%溶液</td>
<td>-</td>
<td>Goldsworthy et al., 1991</td>
</tr>
</tbody>
</table>

8.3.7 発がん性

1,4-ジオキサンの発がん性試験結果を表 8-7に示す。

米国国立がん研究所(NCI)で実施されたB6C3F1マウスに1,4-ジオキサンの0, 0.5, 1.0%(雄: 0, 0.5, 1.0%)を90週間経口 (飲水) 投与した実験では, 0.5%以上の群で肝細胞腺腫/がんの発生率が有意に増加し, 雌でも生存率の減少傾向, 肝細胞腺腫/がんの発生率は有意に増加している (NCI, 1978)。同様に, BDF1マウスに1,4-ジオキサンの0, 500, 2,000, 8,000 ppm を104週間経口 (飲水) 投与した実験では, 2,000 ppmの雄, 及び500, 2,000 ppmの雄で肝細胞腺腫の発生率が増加し, 8,000 ppmの雄, 及び500 ppm以上の雌で肝細胞腺腫の発生率が有意に増加している (Yamazaki et al., 1994)。

Osborne-Mendelラットに0, 0.5, 1.0% (雄: 0, 0.5, 1.0%)を110週間経口 (飲水) 投与した実験では, 0.5%以上の群で雄に鼻腔の扁平上皮がん、
雌で鼻腔の扁平上皮がん、肝細胞腺腫の発生率の有意な増加がみられている (NCI, 1978)。また、F344ラットに200, 1,000, 5,000 ppmを104週間経口（飲水）投与した実験では、200 ppmでは影響がみられなかったが、1,000 ppm以上の雌雄で肝細胞腺腫の発生率が有意に増加、また5,000 ppmの雌雄で鼻腔の悪性腫瘍（扁平上皮がん、肉腫、鼻腔神経経皮腫、横紋筋肉腫）、及び肝細胞がん、腹膜の中皮腫、皮下の線維腫、雄の乳腺の線維腺腫及び雌の乳腺の腺腫の発生率の有意な増加がみられている (Yamazaki et al., 1994)。

Shermanラットに1,4-ジオキサンの0、0.01、0.1、1.0%（雄：0、9.6、94、1,015 mg/kg/日、雌：0、19、148、1,599 mg/kg/日相当）を2年間飲水投与した試験で、0.01%及び0.1%投与群では発がん性はみられなかったが、1%投与群では雌雄に肝臓の腫瘍（肝細胞がん、肝管がん、肝管腫瘍）の発生率が有意に増加し、また、鼻腔の扁平上皮がんが誘発された。そのNOAELは0.1%（雄：94 mg/kg/日、雌：148 mg/kg/日相当）であった (Kociba et al., 1974)。

以上から、1,4-ジオキサンはマウス、ラットに発がん性を示す。最も信頼性のあるデータは試験時期も最新で、投与期間も十分なラット、マウスに対する飲水投与試験（Yamazaki et al., 1994）と判断する。1,4-ジオキサンは7.3.6 遺伝毒性の検討の結果遺伝毒性を示さないと判断できるので、この場合、マウスでは、雌に肝細胞腺腫、肝細胞がんの発生率の増加を指標とした発がん性のLOAELは500 ppmである。また、ラットでは雌雄の肝細胞腺腫発生率の増加を指標としたNOAELは200 ppmである。マウスにおける低用量で発生する肝細胞がんに対する評価は意見が分かれており、より低用量でラットにNOAELが存在するため、1,4-ジオキサンの発がん性のNOAELはラットへの飲水投与試験における雌雄の肝細胞腺腫の発生率の増加を指標とした200 ppm (CERI換算 雄：26 mg/kg/日、雌：29 mg/kg/日相当) と判断する。

1,4-ジオキサンの国際機関等での発がん性評価を表 8-8に示す。IARCでは、グループ2B（ヒトに対して発がん性がある可能性がある物質）に分類している。

| 表 8-7 1,4-ジオキサンの発がん性試験結果 |
|---|---|---|---|
| 動物種 | 投与方法 | 投与期間 | 投与量 | 結果 |
| マウス B6C3F1 雌雄 5週齢 50匹/群 | 飲水 | 90週間 | 0、0.5、1.0% (雄：0、720、830 mg/kg/日相当、雌：0、380、860 mg/kg/日相当) | 0.5%以上：
雄：肝細胞腺腫/がんの発生率が有意に増加
雌：生存率の減少傾向、肝細胞腺腫/がんの発生率が有意に増加 |
| マウス BDF1 雌雄 週齢不明 50匹/群 | 飲水 | 104週間 | 0、500、2,000、8,000 ppm | 500 ppm:
雄：影響なし
雌：肝細胞腺腫の発生率が増加。
肝細胞がんの発生率が有意に増加 2,000 ppm：
雄：肝細胞腺腫の発生率が増加
雌：生存率が有意に減少、肝細胞腺腫の発生率が増加、肝細胞がんの発生率が有意に増加 8,000 ppm：
雄：肝細胞がんの発生率が有意 |
<p>| | | | | NCI. 1978 |
| | | | | Yamazaki et al., 1994 |</p>
<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
</table>
| ラット Osborne-Mendel雌雄 5 週齢 35 匹/群 | 飲水 | 110 週間 | 0, 0.5, 1.0% (雄: 0, 240, 530 mg/kg/日相当、雌: 0, 350, 640 mg/kg/日相当) | 0.5%以上: 雄: 鼻腔の扁平上皮がんの発生率が有意に増加
雌: 鼻腔の扁平上皮がん、肝細胞腺腫の発生率が有意に増加 | NCI. 1978 |
| ラット SD雄 週齢不明(体重 200 g) 8-11 匹/群 | 強制経口 | 部分肝切除の24時間後にDENASを30 mg/kg 腹腔内投与 5日後から5日 /週、7週間 | 0, 100, 1,000 mg/kg/日 | 生理食塩水+ジオキサン 100 mg/kg:
雄: 影響なし
生理食塩水+ジオキサン 1,000 mg/kg:
雄: 小葉性肺不張
DENAS+ジオキサン 100 mg/kg:
雄: 影響なし
DENAS+ジオキサン 1,000 mg/kg:
雄: 生殖機能の抑制
DENAS: ジエチルニトロサミン | Lundberg et al., 1987 |
| ラット F344雄 週齢不明 50 匹/群 | 飲水 | 104 週間 | 0, 200, 1,000, 5,000 ppm | <腫瘤性病変>
200 ppm:
雄: 影響なし
雌: 影響なし
1,000 ppm:
雄: 肝細胞腺腫の発生率が有意に増加
雌: 肝細胞腺腫の発生率が有意に増加
5,000 ppm:
雄: 鼻腔の悪性腫瘍(扁平上皮がん、肉腫、肺腔神経上皮腫、横紋筋肉腫)、肝細胞がんの発生率が有意に増加、腹膜の悪性腫瘍、皮下の線維腫、乳腺の線維腫、間質性腫瘍の発生率が有意に増加
雌: 鼻腔の悪性腫瘍(扁平上皮がん、肉腫、肺腔神経上皮腫、横紋筋肉腫)肝細胞腺腫とがんの発生率が有意に増加、乳腺の腫瘍、間質性腫瘍の発生率が有意に増加

<腫瘤性病変以外の変化>
200 ppm:
雄: 影響なし
雌: 影響なし
1,000 ppm 以上:
雄: 肝臓の過形成の発生率が増加
雌: 肝臓の過形成の発生率が増加 | Yamazaki et al., 1994 |
<table>
<thead>
<tr>
<th>動物種</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット SD 雄 2-3 月齢 30 匹/群</td>
<td>飲水</td>
<td>13 か月間</td>
<td>0, 0.75, 1.00, 1.40, 1.80% (総投与量 104, 142, 191-198, 213-256 g)</td>
<td>投与群(全群の合計): 120 例中 6 例で鼻腔の扁平上皮がん、このうちの 4 例で肝細胞がんが発生</td>
<td>Hoch-Ligeti et al., 1970</td>
</tr>
<tr>
<td>ラット SD 雄 2-3 月齢 28-32 匹/群</td>
<td>飲水</td>
<td>13 か月間</td>
<td>0.75%, 1.00%, 1.40%, 1.80%</td>
<td>0.75%: 4 例で初期肝臓腫瘍が発生 1%: 9 例で初期肝臓腫瘍が発生 1.4%: 13 例で初期肝臓腫瘍、3 例で肝細胞がんが発生 1.8%: 11 例で初期肝臓腫瘍、12 例で肝細胞がんが発生 TD5: 72 g TD50: 149 g TD95: 260 g</td>
<td>Argus et al., 1973</td>
</tr>
<tr>
<td>ラット Sherman 雌雄 6-8 週齢 60 匹/群</td>
<td>飲水</td>
<td>2年間</td>
<td>0, 0.01, 0.1, 1.0% (雌: 0, 9.6, 94, 1,015 mg/kg/日相当、雄: 0, 19, 148, 1,599 mg/kg/日相当)</td>
<td>0.01%: 発がん性の影響なし 0.1%以上: 発がん性の影響なし 1%: 雌雄: 肝臓腫瘍(肝細胞がん、胆管がん、胆管腫)発生率が有意に増加、鼻腔の扁平上皮がんを誘発</td>
<td>Kociba et al., 1974</td>
</tr>
<tr>
<td>ラット Wistar 雌雄 週齢不明 288 匹 (対照群は 192 匹)</td>
<td>吸入</td>
<td>2年間 7 時間/日 5日/週</td>
<td>0, 111 ppm (0.4 mg/L)</td>
<td>111 ppm: 雄: 影響なし 雌: 影響なし</td>
<td>Torkelson et al., 1974</td>
</tr>
<tr>
<td>モルモット 雄 週齢不明 22 匹 (対照群は 10 匹)</td>
<td>飲水</td>
<td>23 か月間</td>
<td>無処置対照群: 0.5-2% (総投与量 588-635 g)</td>
<td>無処置対照群: 1 例で肺の気管支上皮腫形成、4 例で肺胞の細胞浸潤 投与群: 雄: 9 例で肺の気管支周囲及び</td>
<td>Hoch-Ligeti & Argus, 1970</td>
</tr>
<tr>
<td>動物種</td>
<td>投与方法</td>
<td>投与期間</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>マウス</td>
<td>A/J</td>
<td>腹腔内または経口</td>
<td>8週間3回/週</td>
<td>総投与量腹腔内：0 (媒体対照)、4,800、12,000、24,000 mg/kg経口：0 (無処置対照)、24,000 mg/kg</td>
<td>腹腔内：4,800 mg/kg：雌雄：影響なし12,000 mg/kg：雌：肺腫瘍発生率が有意に増加雄：影響なし24,000 mg/kg：雌雄：影響なし経口：雌：24,000 mg/kg：影響なし</td>
</tr>
<tr>
<td>マウス</td>
<td>A/J</td>
<td>腹腔内</td>
<td>8週間3回/週</td>
<td>総投与量0 (媒体対照、無処置対照)、400、1,000、2,000 mg/kg</td>
<td>400 mg/kg：雌：影響なし1,000 mg/kg：雌：影響なし2,000 mg/kg：雌：担腫瘍動物数及び1匹あたりの腫瘍数が有意に増加</td>
</tr>
<tr>
<td>マウス</td>
<td>SENCAR</td>
<td>経口</td>
<td>60週間3週/週</td>
<td>イニシエーターとして投与後、TPA 1µgを3週、20週間塗布</td>
<td>1,000 mg/kg</td>
</tr>
<tr>
<td>マウス</td>
<td>Swiss Webster</td>
<td>経皮</td>
<td>60週間3週</td>
<td>0.2 mg</td>
<td>0.2 mg/kg：雌雄：影響なし</td>
</tr>
</tbody>
</table>

太字はリスク評価に用いたデータを示す。

表8-8 1,4-ジオキサンの国際機関等での発がん性評価

<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分類</th>
<th>分類基準</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC (2001)</td>
<td>グループ2B</td>
<td>ヒトに対して発がん性を示す可能性がある物質。</td>
</tr>
<tr>
<td>ACGIH (2001)</td>
<td>□</td>
<td>ヒトへの発がん性として分類できない物質。</td>
</tr>
<tr>
<td>日本産業衛生学会 (2001)</td>
<td>第2群B</td>
<td>ヒトに対しておそらく発がん性があると考えられる物質で、証拠が比較的に十分でない物質。</td>
</tr>
</tbody>
</table>

8.4 ヒト健康への影響（まとめ）

ヒトに対する1,4-ジオキサンの影響として、眼、鼻、咽頭に刺激性がみられ、さらに急性中毒として脳、肝臓、腎臓の障害がみられている。

1,4-ジオキサンは、経口投与、吸入暴露ともに速やかに消化管から吸収され、皮膚投与にお
いても中毒量が速やかに吸収される。代謝産物はほとんどがCO-ヒドロキシエトキシ酢酸である。
実験動物に対する1,4-ジオキサンの経口投与によるLD₅₀は、ラットで5,170－7,300mg/kg、マウスでは5,700 mg/kgであった。毒性症状としては、肝障害を中心としたもので、肝臓重量の増加と肝臓のオルチニンデカルボキシラーゼ活性の増加、シトクロムP450量の増加などがみられている。
ウサギの皮膚で中等度の刺激性がみられるが、ラットでは刺激性は見られていない。また、ラット及びモルモットに対し眼刺激性を有し、マウス、モルモット、ネコに対し、鼻、肺に刺激性を有する。
反復投与毒性試験は、経口、皮下内、経皮投与及び吸入による結果が報告されており、標的器官は、肝臓、腎臓及び肺である。6－8週齢のShermanラットに2年間飲水投与した試験で、肝細胞の変性、壊死、肝細胞過形成及び尿細管上皮の変性、及び再生がみられている。本実験でのNOAELは雌雄とも0.01％（9.6 mg/kg/日相当）とされている。吸入では、ラットを111 ppmに7時間/日、週5日間で2年間暴露した実験では、何らの影響もみられていない。
生殖・発生毒性に関する1,4-ジオキサンの報告は少なく、雌ラットに妊娠6日目から15日目まで10日間強制経口投与した試験で、最高用量のみで母体重の増加及び胎児の体重減少、胸骨骨化率の低下がみられたが、奇形は認められていない。本実験でのNOAELは、親動物及び児動物ともに516 mg/kg/日と判断した。
in vitro試験としては、ネズミチフス菌での再帰突然変異試験、CHO細胞を用いた染色体異常試験、マウスリンフォーマ試験、大腸菌を用いたDNA修復試験で代謝活性化の有無にかかわらず陰性と報告されている。CHO細胞を用いた姉妹染色分体交換試験では、代謝活性化した場合は陰性で、活性化しない場合に弱い陽性を示すと報告されている。また、肝臓の初代培養細胞を用いた不定期DNA合成（UDS）試験でも陰性である。BALB 3T3細胞を用いた形質転換試験では、代謝活性化しない場合に陽性の結果が報告されている。
in vivo試験では、マウスを用いた小核試験で結果が想定がみられている。雄のC57BL-6マウスに900-3,600 mg/kgを経口投与した場合、陰性の結果が得られている。しかし、同様の二つの小核試験では陰性と報告されている。また、雄のF344ラットを用いたUDS試験、ショウジョウバエを用いた伴性劣性致死試験ではいずれも陰性の結果が報告されている。SDラットを用いたDNA合成、DNA修復試験では高用量（1,000 mg/kg）で陽性と報告されている。以上のデータから1,4-ジオキサンは遺伝毒性を示さないと判断する。
1,4-ジオキサンの発がん性については多くの試験が行われており、BDF₁マウスに104週間経口（飲水）投与した実験では、雄で肝細胞腺腫及びがんの発生率が有意に増加し、雌でも生存率の減少傾向、肝細胞腺腫及びがんの発生率が有意に増加している。また、F344ラットに104週間経口（飲水）投与した実験では、1000 ppm 投与群で雌雄で肝細胞腺腫の発生率が増加し、また、5,000 ppm以上では鼻腔の悪性腫瘍、肝細胞腺腫及びがんの発生率も有意に増加している。この発がん性は、複数の実験でも同様の結果が得られている。従って1,4-ジオキサンはマウス、ラットに発がん性を示し、その経口投与によるNOAELはラットの肝細胞腺腫の発生率の増加を指標とした200 ppm（雄：26 mg/kg/日、雌：29 mg/kg/日相当）である。
IARCは、グループ2B（ヒトに対して発がん性がある可能性がある物質）に分類している。

-35-
9. リスク評価

9.1 環境中の生物に対するリスク評価

環境中の生物に対するリスク評価は、水生生物を対象とし、その影響を3つの栄養段階（藻類・甲殻類・魚類）で代表させる。リスク評価は、無影響濃度等（NOEC、LC、EC）を推定環境濃度（EEC）で除した値である暴露マージン（MOE）と、無影響濃度等として採用した試験結果の不確実係数値を比較することにより行う。

9.1.1 リスク評価に用いる推定環境濃度

本評価書では、1,4-ジオキサンの EEC として、化学物質評価研究機構による2001年度の測定結果の95パーセンタイルである2.9 g/Lを採用した（6.3参照）。

9.1.2 リスク評価に用いる無影響濃度

リスク評価に用いる1,4-ジオキサンの水生生物に対する無影響濃度等を表9-1に示した。3つの栄養段階を代表する生物種（藻類、甲殻類、魚類）のいずれについても長期毒性試験結果（Dow chemical, 1995; 環境庁, 1996）を用いる（7.参照）。

これらの結果から、1,4-ジオキサンの環境中の水生生物に対するリスク評価に用いる無影響濃度として、最も低濃度から影響のみられた藻類であるセレナストラムに対する生長阻害を指標とした72時間NOECの580mg/L（環境庁, 1996）を採用した。なお、魚類（メダカ）の長期毒性試験結果は、確定値が得られていないため用いない。

表9-1 1,4-ジオキサンの水生生物に対する無影響濃度等

<table>
<thead>
<tr>
<th>生物レベル</th>
<th>生物種</th>
<th>エンドポイント</th>
<th>濃度（mg/L）</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>藻類</td>
<td>Selenastrum capricornutum*1） (セレナストラム)</td>
<td>72時間NOEC生長阻害（580）</td>
<td>580</td>
<td>環境庁, 1996</td>
</tr>
<tr>
<td>甲殻類</td>
<td>Ceriodaphnia dubia (ネコミジンコ属の一種)</td>
<td>7日間NOEC繁殖</td>
<td>625</td>
<td>Dow, 1995</td>
</tr>
<tr>
<td>魚類</td>
<td>Oryzias latipes (メダカ)</td>
<td>21日間NOEC成長</td>
<td>□100</td>
<td>環境庁, 1996</td>
</tr>
</tbody>
</table>

*1) 現学名: Pseudokirchneriella subcapitata

太字はリスク評価に用いたデータを示す。

9.1.3 暴露マージンの算出

1,4-ジオキサンの環境中の水生生物に対するMOEを、藻類の生長阻害を指標とした72時間NOECの580mg/Lを用いて、以下のように算出した。

\[
MOE = \frac{NOEC}{EEC} = \frac{580,000}{2.9} = 200,000
\]
不確定係数: 室内試験の結果から野外での影響を推定するための不確定係数 (10)
不確定係数値: 10

9.1.4 環境中の生物に対するリスク評価結果
算出された MOE は 200,000 であり、不確定係数値 10 より大きく、現時点では 1,4-ジオキサンの EEC において、環境中の水生生物に悪影響を及ぼすことはないと判断する。

9.2 ヒト健康に対するリスク評価
ヒト健康に対するリスク評価は、我々の住民を対象とする。1,4-ジオキサンのヒトにおける定量的な健康影響データは得られていなかったため、ヒト健康に対するリスク評価には動物試験データを用いることとする (8.参照)。リスク評価は、実験動物に対する無毒性量等 (NOAEL、LOAEL) を推定摂取量で除した値である MOE と、評価に用いた毒性試験結果の不確定係数値を比較することにより行う。

9.2.1 ヒトの推定摂取量
1,4-ジオキサンは、主に大気、飲料水及び食物（魚類）を通じてヒトに摂取されると推定され、それそれぞれの経路からの 1 日推定摂取量を表 9-2に示した (6.5 参照)。

吸入口及び全経路のヒトの体重 1 kg あたりの 1 日推定摂取量 0.056、0.080 及び 0.14 g/kg/
日をヒト健康に対するリスク評価に用いる。

表 9-2 1,4-ジオキサンの 1 日推定摂取量

<table>
<thead>
<tr>
<th>摂取経路</th>
<th>1 日推定摂取量 (g/人/日)</th>
<th>体重 1 kg あたりの 1 日推定摂取量 (g/kg/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸入</td>
<td>大気 (呼吸) 2.8</td>
<td>0.056</td>
</tr>
<tr>
<td></td>
<td>飲料水 3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>食物（魚類） 0.36</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>小計 4.0</td>
<td></td>
</tr>
<tr>
<td>全経路</td>
<td>合計 6.8</td>
<td>0.14</td>
</tr>
</tbody>
</table>

9.2.2 リスク評価に用いる無毒性量
1,4-ジオキサンの反復投与毒性に関しては、経口投与経路で主として肝臓、腎臓及び肺に影響がみられている。

吸入口経路では、ヒト健康への影響のリスク評価に必要な無毒性量を判断するに適切な動物試験の報告は得られなかった。ラットの 2 年間の吸入暴露試験で 111 ppm (0.4 mg/L) において影響がなかったという報告 (Torkelson et al., 1974) があるが、1 用量の試験結果であり、信頼性に欠けるため、リスク評価に用いない。

経口経路では、ラットの 2 年間の飲水投与試験の肝細胞の変性と壊死、肝細胞過形成、尿細管上皮の変性及び再生を指標とした NOAEL 0.01% (9.6 mg/kg/日相当) (Kociba et al., 1974) を採用した。
1,4-ジオキサンの生殖・発生毒性については、ラットの強制経口投与による発生試験で母体重の増加及び胎児の体重減少、胸壁骨化率の低下が見られ、親動物及び児動物双方の生殖・発生に対するNOAELは、一般毒性よりも高濃度であり、516 mg/kg/日である（Giavini et al., 1985）。

1,4-ジオキサンの遺伝毒性については、復帰突然変異試験、染色体異常試験では陰性であり、in vivo の小核試験でも陰性の報告が多く見られる。また、in vitro、in vivo双方の試験において高用量で陽性の報告がある。これらの結果から、本評価書では1,4-ジオキサンは遺伝毒性を示さないと判断する。発がん性については、マウス及びラットに発がん性を示し、IARCでは2B（ヒトに対して発がん性を示す可能性がある物質）に分類している。F344ラットに104週間経口（飲水）投与した実験（Yamazaki et al., 1994）では、雌雄に肝細胞腺腫の発生率の有意な増加がみられている。この発がん性は、その他の実験（Kociba et al., 1974）でも同様の結果が得られている。そこで本評価書では最も信頼性のあるデータとして、試験時期も最新で、投与期間も十分なYamazakiらの実験における肝細胞腺腫の発生率の増加を指標としたNOAEL200 ppm（雄：26 mg/kg/日、雌：29 mg/kg/日相当）を採用した。

なお、一般毒性についてEU及び我が国の環境省は、経口経路の無毒性量として本評価書と同様の試験結果（Kociba et al., 1974）のNOAEL9.6 mg/kg/日を用いている（ECB, 2002；環境省, 2003）。オーストラリア保健・高齢者担当省は、2つの試験結果（Kociba et al., 1974; Yamazaki et al., 1994）からNOAEL10〜40 mg/kg/日としている（Australia, 1998）。吸入経路についてはEU、オーストラリア保健・高齢者担当省及び我が国の環境省は、ともにラットの2年間の吸入暴露試験結果（Torkelson et al., 1974）からNOAELを用いている（Australia, 1998; ECB, 2002; 環境省, 2003）。

9.2.3 暴露マージンの算出

1,4ジオキサンは、ヒトに対して吸入及び経口経路からの摂取が推定される。吸入暴露で評価できる試験データが無いため、ここでは経口経路の摂取量及び両経路の合計摂取量からMOEを算出する。また、発がん性については、遺伝毒性を示さない発がん物質と判断し、発がんを指標としたMOEについても算出した（表9-3）。

a. 反復投与毒性に対する経口経路での暴露マージン

ラットの2年間の飲水投与試験のNOAEL0.01%（9.6 mg/kg/日相当）を用いて、以下のように算出した。

\[
\text{MOE} = \frac{\text{NOAEL}}{\text{ヒト体重 1 kg あたりの1日推定経口摂取量}}
\]
\[
= 9,600 (\text{g/kg/日}) / 0.080 (\text{g/kg/日})
\]
\[
= 120,000
\]

不確定係数: 動物とヒトの種差についての不確定係数 (10)
個人差についての不確定係数 (10)
不確定係数積: 100

-38-
b. 反復投与毒性に対する1日合計推定摂取量での暴露マージン

吸入暴露試験結果が得られなかったため、ラットの2年間の飲水投与試験のNOAEL0.01% (9.6 mg/kg/日相当) を用いて、以下のように算出した。

\[
\text{MOE = NOAEL / ヒト体重 \text{1 kg} \text{あたり1日合計推定摂取量} = 9,600 (\text{mg/kg/日}) / 0.14 (\text{mg/kg/日}) = 69,000}
\]

この場合、不確実係数積は、経口経路での100とした。

c. 発がん性に対する暴露マージン

ラットの104週間の飲水投与試験のNOAEL200 ppm (雄: 26 mg/kg/日相当) を用いて、以下のように算出した。

\[
\text{MOE = NOAEL / ヒト体重 \text{1 kg} \text{あたり1日合計推定摂取量} = 26,000 (\text{mg/kg/日}) / 0.14 (\text{mg/kg/日}) = 190,000}
\]

不確実係数: 動物とヒトの種差についての不確実係数 (10)
個人差についての不確実係数 (10)
発がん性 (10)
不確実係数積: 1,000

表 9-3 1,4-ジオキサンの暴露マージンと不確実係数積

<table>
<thead>
<tr>
<th>毒性</th>
<th>摂取経路</th>
<th>体重1 kgあたりの1日推定摂取量 (mg/kg/日)</th>
<th>NOAEL (mg/kg/日)</th>
<th>MOE</th>
<th>不確実係数積</th>
</tr>
</thead>
<tbody>
<tr>
<td>一般毒性</td>
<td>吸入</td>
<td>0.056</td>
<td>9.6</td>
<td>120,000</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>経口</td>
<td>0.080</td>
<td>9.6</td>
<td>69,000</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>全経路（合計）</td>
<td>0.14</td>
<td>9.6</td>
<td>190,000</td>
<td>1,000</td>
</tr>
<tr>
<td>がん</td>
<td>全経路（合計）</td>
<td>0.14</td>
<td>26</td>
<td>190,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

1) 調査した範囲では影響を適切に評価できる試験は得られていない。
2) 算出せず
3) 種差 (10) □ 個人差 (10)
4) 経口経路の NOAEL あるいは不確実係数積を採用
5) 種差 (10) □ 個人差 (10) □ 発がん性 (10)

9.2.4 ヒト健康に対するリスク評価結果

表9-3に示したように1,4-ジオキサンの経口経路のMOE120,000は、ヒト健康に対する評価に用いた毒性試験結果の不確実係数積100よりも大きく、また、全経路のMOE69,000も不確実係数積100よりも大きいため、1,4-ジオキサンは、現時点ではヒト健康に悪影響を及ぼすことはないと判断する。なお、発がん性に対するMOE190,000も不確実係数積1,000よりも大きく、現時点ではヒト健康に悪影響を及ぼすことではないと判断する。
1,4-ジオキサンは、経口経路からの摂取量と同等の量を吸入経路から摂取しているが（表9-3）、信頼性のある吸入暴露試験データが得られなかったこと、また、消費者暴露として経皮暴露が考えられることから、吸入暴露及び経皮暴露による毒性試験データの取得が重要である。これらの試験データが得られた時点で、再度初期リスク評価を行う必要がある。
ACGIH, American Conference of Governmental Industrial Hygienists (1991) Documentation of the Threshold Limit Values and Biological Exposure Indices, 6th Ed., Vol.1, Cincinnati, OH.

1) データベースの検索を2001年4月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。また、2004年4月に国際機関等による新たなリスク評価書の公開の有無を調査し、キーツディとして採用すべき文献を入手した際には追加した。

Dow (1995) Toxicity and environmental references for 1,4-dioxane. Personal communication. (NICNAS, 1998 より引用)

GDCh BUA (1991) GDCh-Advisory Committee on Existing Chemicals of Environmental Relevance (BUA) Report 80 1,4-Dioxane.

Morita, T. and Hayashi, M. (1998) 1,4-Dioxane is not mutagenic in five in vitro assays and mouse peripheral blood micronucleus assay, but is in mouse liver micronucleus assay. Environ. Mol.

-43-

U.S. NIST, National Institute of Standards and Technology (2002) NIST Library of 54K compounds, Gaithersburg, MD.

相澤貴子（2001）新たな汚染物質による水道水源の汚染、環境技術, 30, 592-597.
化学物質評価研究機構（2001）化学物質有害性・リスク調査等報告書 - PRTR 法指定化学物質の環境挙動・生態影響・健康影響 -, 平成 12 年度通商産業省委託研究.
化学物質評価研究機構編（2002a）化学物質ハザード・データ集, 経済産業省化学物質管理課監修, 第一法規出版, 東京.
化学物質評価研究機構（2002b）平成 13 年度 河川モニタリング報告書, 平成 13 年度新エネルギー・産業技術総合開発機構委託研究.
環境庁（1996）平成 7 年度環境庁化学物質の生態影響試験事業,
1,4-ジオキサンの藻類（Selenastrum capricornutum）に対する生長阻害試験
日本食品分析センター, 試験番号：第 07021 号, 1996 年 3 月 29 日）
1,4-ジオキサンのオオミジンコ（Daphnia magna）に対する急性遊泳阻害試験日本食品分
環境省 (2001) 平成 12 年度版 化学物質と環境
環境省 (2002a) 平成 13 年度版 化学物質と環境
環境省 (2002b) 正環境中の要調査項目存在状況調査結果(平成 12 年度調査)
環境省 (2003) 化学物質の環境リスク評価 第 2 巻, 1,4-ジオキサン.
経済産業省 (2002) 告示第 149 号 (官報号外、平成 14 年 3 月 29 日).
経済産業省、環境省 (2003a) 特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律(化学物質排出把握管理促進法)に基づく届出排出量及び移動量並びに届出外排出量の集計結果について (排出年度：平成 13 年度).
経済産業省、環境省 (2003b) 平成 13 年度 PRTR 届出外排出量の推計方法等の概要
厚生科学研究 (2001) 水道における化学物質の毒性、挙動及び低減化に関する研究報告書 (平成 12 年度).
国立環境研究所 (1999) 廃棄物埋立処分に起因する有害物質暴露量の評価手法に関する研究 (平成 6～9 年度) 国立環境研究所特別研究報告.
産業技術総合研究所 (2003) 産総研・曝露・リスク評価大気拡散モデル (AIST-ADMER)
(http://unit.aist.go.jp/crm/admer/).
庄司成敬、安部明美 (2001) 1,4-ジオキサンおよび界面活性剤の事業所からの排出実態、用水と廃水, 43, 1046.
通商産業省 (1997) 告示第 685 号 (官報、平成 9 年 12 月 5 日)
通商産業省 (2000a) 告示第 14 号 (官報、平成 12 年 1 月 13 日).
通産省産業部（2000b）告示第762号（官報、平成12年12月19日）
日本化学工業協会（2002a）日本化学工業協会の社会的責任・ケアによるPRTRの実施について - 2002年度化学物質排出量調査結果 - （2001年度実績）
日本化学工業協会（2002b）PRTR対象物質簡易評価システムversion2.0
日本食品分析センター（1998）平成11年度食事からの化学物質暴露量に関する調査報告書（環境庁委託報告書）
東野晴行、北林興二、井上和也、三田和哲、米澤義康（2003）曝露・リスク評価大気拡散モデル（ADMER）の開発-大気環境学会誌, 38(2), 100-115.
化学物質の初期リスク評価書
No.13 1,4-ジオキサン

作成経緯
2002年3月 原案作成
2002年12月 有害性評価部分 経済産業省 化学物質審議会管理部・審査部会 第14回安全評価管理小委員会 審議、了承
2003年9月 Ver.0.9（暫定版）公表
2004年3月 PRTRデータを用いた暴露・リスク評価見直し原案作成
2004年7月 有害性評価部分 初期リスク評価指針Ver.1.0に基づく修正、及び新たな情報の追加（経済産業省 化学物質審議会管理部・審査部会安全評価管理小委員会に報告）
2005年5月 Ver.1.0 公表

初期リスク評価責任者
プロジェクトリーダー 中 西 準 子
有害性評価外部レビュアー
環境中の生物への影響（7章）
岡山大学資源生物科学研究所 青 山 哲
ヒト健康への影響（8章）
大阪市立大学医学部 福 島 昭 治

初期リスク評価実施機関、リスク評価担当者
財団法人 化学物質評価研究機構
安心 院 祥 三
今 田 中 伸 堅
奥 田 尚 子
金 井 勝 彦
高 久 正 昭
野 坂 俊 樹
林浩 次

独立行政法人 製品評価技術基盤機構
平 井 祐 介

連絡先
財団法人 化学物質評価研究機構 安全性評価技術研究所
〒112-0004 東京都文京区後楽1-4-25 日教販ビル7F
tel. 03-5804-6136 fax. 03-5804-6149
独立行政法人 製品評価技術基盤機構 化学物質管理センター リスク評価課
〒151-0066 東京都渋谷区西原 2-49-10
tel. 03-3468-4096 fax. 03-3481-1959