化学物質の初期リスク評価書

Ver. 1.0

No.118

4-ビニル-1-シクロヘキセン

4-Vinyl-1-cyclohexene

化学物質排出把握管理促進法政令号番号：1-255

CAS 登録番号：100-40-3

2008年7月

独立行政法人 製品評価技術基盤機構

財団法人 化学物質評価研究機構

委託元 独立行政法人 新エネルギー・産業技術総合開発機構
序 文

目的

「化学物質の初期リスク評価書」は、独立行政法人 新エネルギー・産業技術総合開発機構から委託された化学物質総合評価管理プログラムの一環である「化学物質のリスク評価及びリスク評価手法の開発」プロジェクトの成果である。このプロジェクトは、「特定化学物質の環境への排出量の把握等及び管理の改善の促進に関する法律」（化学物質排出把握管理促進法）の対象化学物質を中心に有害性情報、排出量等の暴露情報など、リスク評価のための基礎データを収集・整備するとともに、これらを利用したリスク評価手法を開発し、評価するものである。

「化学物質の初期リスク評価書」では、環境中の生物及びヒト健康に対する化学物質のリスクについてスクリーニング評価を行い、その結果、環境中の生物あるいはヒト健康に悪影響を及ぼすことが示唆されると判断された場合は、その化学物質に対して更に詳細な調査、解析及び評価等の必要とされる行動の提案を行うことを目的とする。

初期リスク評価の対象

化学物質排出把握管理促進法第一種指定化学物質のうち、生産量、環境への排出量及び有害性情報などを基に選択した化学物質を初期リスク評価の対象とする。環境中的生物への影響については、有害性評価手法が実際的に整えられている水生生物を対象とする。ヒト健康への影響については、我が国の住民を対象とし、職業上の暴露は考慮しない。

公表までの過程

財団法人 化学物質評価研究機構及び独立行政法人 製品評価技術基盤機構が共同して評価書案を作成し、有害性評価（環境中の生物への影響及びヒト健康への影響）については外部の有識者によるレビューを受け、その後、経済産業省化学物質審議会管理部会・審査部会安全評価管理小委員会の審議、承認を得ている。また、暴露評価及びリスク評価については独立行政法人 産業技術総合研究所によるレビューを受けている。本評価書は、これらの過程を経て公表している。

初期リスク評価書 Ver. 0.1

初期リスク評価書 Ver. 0.4
(原案)

初期リスク評価書 Ver. 1.0
(公表版)

なお、本評価書の作成に関する手法及び基準は「化学物質の初期リスク評価指針 Ver. 2.0」及び「作成マニュアル Ver. 2.0」として、ホームページ（http://www.nite.go.jp/）にて公開されている。
要約

4-ビニル-1-シクロヘキサンは無色の液体であり、水溶解度は50 mg/L (25℃) である。
4-ビニル-1-シクロヘキサンの主な用途は、難燃剤や塗料の合成原料であり、2003年の製造及び輸入量の合計は約400トンであった。2003年度PRTRデータによると、4-ビニル-1-シクロヘキサンは1年間に全国合計で、大気へ8トン、公共用水域へ38kg排出され、土壤への排出はない。主たる排出経路は、4-ビニル-1-シクロヘキサンの使用段階での大気への排出と考えられる。
4-ビニル-1-シクロヘキサンは、水溶解度が小さく、蒸気圧やヘンリーデータが大きい。さらに、化学物質の危険性に基づく好気的生分解性試験において、難分解性と判定され、土壤吸着係数も大きいことから、環境水中に4-ビニル-1-シクロヘキサンが排出された場合は、とけ出による除去及び懸濁物質及び底質への吸着と考えられ、生分解による除去は小さいと推定される。また、水生生物に対する生物濃縮倍数BCF = 83〜211であり、生物濃縮性はない、または低いと推定される。

4-ビニル-1-シクロヘキサンの環境中濃度として、大気、公共用水域 (河川、海域)、飲料水及び食物のいずれにおける濃度も調査した範囲内では得られなかった。また、2003年度PRTR排出量データと数理モデルを用いて大気中濃度及び河川水中濃度の推定を行った結果、それぞれ0.033 μg/m³、0.064 μg/Lであった。

4-ビニル-1-シクロヘキサンの河川水中濃度の測定値は得られなかったので、水生生物に対するリスク評価を行うための推定環境濃度 (EEC) として、河川水中濃度の推定値0.064 μg/Lを用いた。

そこで、ヒトが4-ビニル-1-シクロヘキサンに暴露する経路としては、呼吸による大気からの吸入暴露、飲料水及び食物を摂取することによる経口暴露が主として考えられる。4-ビニル-1-シクロヘキサンの大気中濃度 (0.033 μg/m³: 推定値) 、飲料水中濃度の代用として河川水中濃度 (0.064 μg/L: 推定値) 、魚体内濃度 (1.4 μg/kg: 推定値) から、ヒトの体重1kgあたりの1日推定摂取量を0.013 μg/kg/日 (吸入経路) 、0.0060 μg/kg/日 (経口経路) と推定した。

4-ビニル-1-シクロヘキサンの環境中の水生生物への有害性に関して、3つの栄養段階 (藻類・甲殻類・魚類) のうち、藻類と甲殻類について急性及び長期毒性試験結果が得られており、魚類については急性毒性試験結果のみが得られている。これらはいずれも界面活性剤が用いられているが、各試験とも公定法に従って実施されていること等を考慮し、有害性の評価に用いることとした。急性毒性試験の最小値は、甲殻類であるオオミジンコに対する遊泳阻害を指標とした48時間EC50が1.87 mg/Lである。また、長期毒性試験の最小値は、甲殻類であるオオミジンコの繁殖を指標とした21日間NOECが0.227 mg/Lであり、得られた水生生物に対する毒性データのうち最小値である。この値とEEC 0.064 μg/Lを用いて暴露マージン (MOE) を算出した結果、MOE 3,500 はリスク評価に用いた毒性試験データに関する不確実係数50より大きく、現時点では4-ビニル-1-シクロヘキサンが環境中の水生生物に悪影響を及ぼすことはないと判断する。
調査した範囲内では、ヒトへの4-ビニル-1-シクロヘキサン暴露に関する疫学調査及び事例に関する報告は得られなかった。
一方、実験動物に対する反復投与毒性試験では、吸入経路では、マウスを用いた13週間吸入暴露試験において、嗜眠、死亡、卵巣の萎縮を指標としたNOAELが250 ppm（換算値：330 mg/kg/日）であり、また、経口経路では、ラット及びマウスを用いた2年間経口投与試験において、マウスで最低用量の200 mg/kg/日以上で、前胃に潰瘍、炎症、上皮過形成が、ラットで最低用量の200 mg/kg/日以上で前胃に上皮過形成がみられ、これらの影響を指標としたLOAELが200 mg/kg/日（換算値：140 mg/kg/日）であった。
生殖への影響は、マウスを用いた連続交配試験でF₀世代及びF₁世代いずれにもみられず、また発生毒性試験は実施されていない。
遺伝毒性に関しては、報告された試験の種類と数が少なく、4-ビニル-1-シクロヘキサンの遺伝毒性については明確には判断できない。発がん性に関しては、マウスへの経口投与試験で卵巣および副腎に発がんが見られたことから、発がん性を示すと判断する。IARCは、4-ビニル-1-シクロヘキサンをグループ2B（ヒトに対して発がん性がある可能性がある物質）としている。
ヒトの推定摂取量と実験動物の反復投与毒性試験より得られた無毒性量を用いてMOEを算出した結果、MOEはそれぞれ25,000,000（吸入経路）、23,000,000（経口経路）であり、リスク評価に用いた毒性試験データに関する不確実係数500及び5000より大きく、4-ビニル-1-シクロヘキサンは現時点ではヒト健康に悪影響を及ぼすことはないと判断する。
以上のことから、現時点では4-ビニル-1-シクロヘキサンは環境中の水生生物及びヒト健康に悪影響を及ぼすことはないと判断する。
なお、遺伝毒性を有する発がん性物質の可能性があることから、今後も遺伝毒性及び発がん性についての情報収集が必要である。
目次

1. 化学物質の同定情報
 1.1 物質名
 1.2 化学物質審査規制法官報公示整理番号
 1.3 化学物質排出把握管理促進法政令番号
 1.4 CAS登録番号
 1.5 構造式
 1.6 分子式
 1.7 分子量

2. 一般情報
 2.1 別名
 2.2 純度
 2.3 不純物
 2.4 添加剤または安定剤
 2.5 現在の我が国における法規制

3. 物理化学的性状

4. 発生源情報
 4.1 製造・輸入量等
 4.2 用途情報
 4.3 排出源情報
 4.3.1 化学物質排出把握管理促進法に基づく排出源
 4.3.2 その他の排出源
 4.4 環境媒体別排出量の推定
 4.5 排出シナリオ

5. 環境中運命
 5.1 大気中での安定性
 5.2 水中での安定性
 5.2.1 非生物的分解性
 5.2.2 生分解性
 5.2.3 下水処理による除去
 5.3 環境中分布推定
 5.4 環境水下での動態
 5.5 生物濃縮性
6. 暴露評価 .. 5
 6.1 環境中濃度 .. 6
 6.1.1 環境中濃度の測定結果 .. 6
 6.1.2 環境中濃度の推定 .. 6
 6.2 水生生物生息環境における推定環境濃度 ... 8
 6.3 ヒトへの暴露シナリオ .. 9
 6.3.1 環境経由の暴露 ... 9
 6.3.2 消費者製品経由の暴露 .. 9
 6.4 ヒトの推定摂取量 ... 9

7. 環境中の生物への影響 .. 9
 7.1 水生生物に対する影響 .. 9
 7.1.1 微生物に対する毒性 ... 9
 7.1.2 藻類に対する毒性 ... 10
 7.1.3 無脊椎動物に対する毒性 .. 10
 7.1.4 魚類に対する毒性 ... 11
 7.1.5 その他の水生生物に対する毒性 .. 11
 7.2 陸生生物に対する影響 ... 12
 7.2.1 微生物に対する毒性 ... 12
 7.2.2 植物に対する毒性 ... 12
 7.2.3 動物に対する毒性 ... 12
 7.3 環境中の生物への影響 (まとめ) ... 12

8. ヒト健康への影響 ... 12
 8.1 生体内運命 .. 13
 8.2 疫学調査及び事例 .. 17
 8.3 実験動物に対する毒性 ... 17
 8.3.1 急性毒性 .. 17
 8.3.2 刺激性及び腐食性 .. 17
 8.3.3 感作性 .. 17
 8.3.4 反復投与毒性 ... 17
 8.3.5 生殖・発生毒性 .. 22
 8.3.6 遺伝毒性 ... 23
 8.3.7 発がん性 .. 24
 8.4 ヒト健康への影響 (まとめ) ... 28

9. リスク評価 .. 29
 9.1 環境中の生物に対するリスク評価 .. 29
 9.1.1 リスク評価に用いる推定環境濃度 .. 29
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1.2</td>
<td>リスク評価に用いる無影響濃度</td>
<td>29</td>
</tr>
<tr>
<td>9.1.3</td>
<td>暴露マージンと不確実係数積の算出</td>
<td>29</td>
</tr>
<tr>
<td>9.1.4</td>
<td>環境中の生物に対するリスク評価結果</td>
<td>30</td>
</tr>
<tr>
<td>9.2</td>
<td>ヒト健康に対するリスク評価</td>
<td>30</td>
</tr>
<tr>
<td>9.2.1</td>
<td>リスク評価に用いるヒトの推定摂取量</td>
<td>30</td>
</tr>
<tr>
<td>9.2.2</td>
<td>リスク評価に用いる無毒性量</td>
<td>31</td>
</tr>
<tr>
<td>9.2.3</td>
<td>暴露マージンと不確実係数積の算出</td>
<td>31</td>
</tr>
<tr>
<td>9.2.4</td>
<td>ヒト健康に対するリスク評価結果</td>
<td>32</td>
</tr>
<tr>
<td>9.3</td>
<td>まとめ</td>
<td>32</td>
</tr>
<tr>
<td>文献</td>
<td></td>
<td>34</td>
</tr>
</tbody>
</table>
1. 化学物質の同定情報
1.1 物質名 □ 4-ニル-1-シクロヘキセン
1.2 化学物質審査規制法官報公示整理番号 □ 3-2229
1.3 化学物質排出把握管理促進法政令号番号 □ 1-255
1.4 CAS登録番号 □ 100-40-3
1.5 構造式

CH=CH₂

1.6 分子式 : C₈H₁₂
1.7 分子量 : 108.18

2. 一般情報
2.1 別名
シクロヘキセンジチレン

2.2 純度
99 %以上 (一般的な製品) (化学物質評価研究機構, 2004)

2.3 不純物
1,5-シクロオクタジェン (一般的な製品) (化学物質評価研究機構, 2004)

2.4 添加剤または安定剤
tert-ブチルカプロール (一般的な製品) (化学物質評価研究機構, 2004)

2.5 現在の我が国における法規制
化学物質排出把握管理促進法: 第一種指定化学物質
化学物質審査規制法: 指定化学物質 (第二種監視化学物質)
消防法: 危険物第四類第一石油類
労働安全衛生法: 危険物引火性の物、名称等を通知すべき有害物
船舶安全法: 引火性液体類
航空法: 引火性液体
港則法: 引火性液体類

3. 物理化学的性状
外観: 無色液体 (IPCS, 2004)
融点: -109℃ (IPCS, 2004)
沸点: 130℃ (IPCS, 2004; NFPA, 2002)
4. 発生源情報

4.1 製造・輸入量等

<table>
<thead>
<tr>
<th>年</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造量</td>
<td>106</td>
<td>-</td>
<td>424</td>
<td>242</td>
<td>460</td>
<td>424</td>
<td>421</td>
</tr>
<tr>
<td>輸入量</td>
<td>223</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

4.2 用途情報

4-ビニル-1-シクロヘキセンは、難燃剤(1-(1,2-ジプロモエチル)-3,4-ジプロモシクロヘキサン)や塗料の合成原料（ビニルシクロヘキセンオキサイド等）に、また塗料溶剤や洗浄剤に用いられるエチルシクロヘキセンの合成原料として使用される（製品評価技術基盤機構, 2005）。

4.3 排出源情報

4.3.1 化学物質排出把握管理促進法に基づく排出源

化学物質排出把握管理促進法に基づく「平成15年度届出排出量及び移動量並びに届出外排出量の集計結果」（経済産業省, 環境省, 2005）（以下、2003年度PRTRデータ）によると、4-ビニル
-1-シクロヘキセンは1年間に全国合計で届出事業者が大気へ8トン、公共用水域へ38kg排出され、廃棄物として21トン移動している。土壌への排出及び下水道への移動はない。また対象業種の届出外事業者、非対象業種、家庭及び移動体からの排出は推計されていない。

a. 届出対象業種からの排出量と移動量
2003年度PRTRデータに基づく4-ビニル-1-シクロヘキセンの排出量及び移動量は、主に化学工業によるものである（経済産業省、環境省、2005）。また、全体的に環境への排出量より、むしろ廃棄物としての移動量のほうが多い。

4.3.2 その他の排出源
2003年度PRTRデータで推計対象とされている以外の4-ビニル-1-シクロヘキセンの排出源に関する情報については、調査した範囲内では得られていない。

4.4 環境媒体別排出量の推定
各排出源における4-ビニル-1-シクロヘキセンの環境媒体別排出量については、届出対象業種の届出外事業者、非対象業種、家庭、移動体のいずれからも排出が推計されていないことから、届出排出量を環境媒体別の排出量とする。
以上のことから4-ビニル-1-シクロヘキセンは大気へ8トン、公共用水域へ38kg排出される。土壌への排出はない（経済産業省、環境省、2005）。ただし、廃棄物としての移動量については、各処理施設における処理後の環境への排出を考慮していない。
また、公共用水域へ排出される届出排出量38kgのうち、排水の放流先が河川と届け出られている排出は3kgであり、ほとんどは海域へ排出されている（経済産業省、2005b）。

4.5 排出シナリオ
2003年度の4-ビニル-1-シクロヘキセンの製造段階における排出原単位（日本化学工業協会、2001）から、4-ビニル-1-シクロヘキセンの製造段階での排出はないものと推定される（製品評価技術基盤機構、2005）。
また、難燃剤や塗料等の合成原料として使用されているという用途情報及び2003年度PRTRデータ等から判断して、4-ビニル-1-シクロヘキセンの使用段階での大気への排出が主たる排出経路と考えられる。

5. 環境中運命
5.1 大気中での安定性
a. OHラジカルとの反応性
対流圏大気中では、4-ビニル-1-シクロヘキセンとOHラジカルとの反応速度定数は8.93×10^{-11} cm³/分子·秒（25℃、推定値）である（SRC:AopWin、2004）。OHラジカル濃度を5×10⁵～1×10⁶分子/cm³とした時の半減期は2～4時間と計算される。
b. オゾンとの反応性
対流圏大気中では、4-ピニル-1-シクロヘキセンとオゾンとの反応速度定数は 2.12 × 10^{-16} \text{cm}^3/分子/秒 (25℃, 推定値) である (SRC:AopWin, 2003)。オゾン濃度を 7 × 10^{11} 分子/cm³ とした時の半減期は 1 時間と計算される。

c. 硝酸ラジカルとの反応性
調査した範囲内では、4-ピニル-1-シクロヘキセンと硝酸ラジカルとの反応性に関する報告は得られていない。

d. 直接光分解性
4-ピニル-1-シクロヘキセンは 295 nm 以上の光を吸収しないので、大気環境中では直接光分解されない (U.S. NLM:HSDB, 2004)。

5.2 水中での安定性
5.2.1 非生物的分解性
4-ピニル-1-シクロヘキセンは、加水分解を受けやすい化学結合はないので、水環境中では加水分解されない。また、4-ピニル-1-シクロヘキセンは、紫外線 (波長 295 nm 以上) を吸収しない (U.S. NLM:HSDB, 2004) ので、表層水中では光増感作用のある物質が共存しないと太陽光による光分解反応は起こらないと考えられる。

5.2.2 生分解性
4-ピニル-1-シクロヘキセンは、化学物質審査規制法に基づく揮発性物質用改良型備養瓶を用いた好気的生分解性試験では、被験物質濃度 100 mg/L、活性汚泥濃度 30 mg/L、試験期間 4 週間の条件において、生物化学的酸素消費量 (BOD) 測定での分解率は 0%であり、難分解性と判定されている。なお、ガスクロマトグラフ (GC) 測定での分解率も 0%であった (通商産業省, 1985)。4-ピニル-1-シクロヘキセンの好気的生分解性に関する報告は、この他には得られていない。

調査した範囲内では、4-ピニル-1-シクロヘキセンの嫌気的生分解性に関する報告は得られていない。

5.2.3 下水処理による除去
調査した範囲内では、4-ピニル-1-シクロヘキセンの下水処理による除去に関する報告は得られていない。

5.3 環境中分布推定
4-ピニル-1-シクロヘキセンが、大気、水域または土壌のいずれかに定常的に排出されて定常状態に到達した状態、すなわち、大気、水域、土壌及び低質間の移動、系外への移動・分解などが原因で減少が見られ合った後も残存している 4-ピニル-1-シクロヘキセンの環境中での分布をフーギシティモデル・レベルIII (Mackay et al., 1992) により推定した (表 5-1)。なお、環境への排
出は、大気、水域及び土壌の各々に個別に排出される 3 つのシナリオを設定した (化学物質評価研究機構, 2001)。

4-ビニル-1-シクロヘキセンが大気に排出された場合は、主として大気に分布し、水域に排出された場合は、水域に 7 割弱、底質に 2 割強分布し、また、土壌に排出された場合は、主として土壌に分布することを推定される。

表 5-1 4-ビニル-1-シクロヘキセンのフタシティモデル・レベルIIIによる環境中分布推定結果

<table>
<thead>
<tr>
<th>シナリオ</th>
<th>大気</th>
<th>水域</th>
<th>土壤</th>
<th>底質</th>
</tr>
</thead>
<tbody>
<tr>
<td>シナリオ 1 (大気中に 100%排出)</td>
<td>98.4</td>
<td>0.1</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>シナリオ 2 (水域中に 100%排出)</td>
<td>0.7</td>
<td>74.5</td>
<td>0.0</td>
<td>24.8</td>
</tr>
<tr>
<td>シナリオ 3 (土壌中に 100%排出)</td>
<td>0.2</td>
<td>0.0</td>
<td>99.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

(化学物質評価研究機構, 2001)

5.4 環境水中での動態

4-ビニル-1-シクロヘキセンは、蒸気圧が 2.09 kPa (25 °C)、水に対する溶解度が 50 mg/L (25 °C) であり、ヘンリー定数が 4.54 kPa·m³/mol (25 °C) である (3. 参照)。ヘンリー定数を基にした水中から大気中への 4-ビニル-1-シクロヘキセンの揮発については、水深 1 m、流速 1 m/秒、風速 3 m/秒のモデル河川での半減期は 1.1 時間で、水深 1 m、流速 0.05 m/秒、風速 0.5 m/秒のモデル湖水での半減期は 4.1 日と推算されるとの報告がある (Lyman et al., 1990)。しかし、4-ビニル-1-シクロヘキセンの水中の懸濁物質及び底質への吸着を考慮すると、水面からの揮発は速くなり、モデル湖水からの揮発による半減期の推算値は 19 日となる (U.S. EPA, 1987)。

4-ビニル-1-シクロヘキセンは、土壌吸着係数 (Koc) の値 520 (3. 参照) から、水中の懸濁物質及び底質には吸着されると推定される。

以上のこと及び 5.2 の結果より、環境水中に 4-ビニル-1-シクロヘキセンが排出された場合は、揮発による除去及び懸濁物質及び底質への吸着が考えられ、生分解による除去は小さいと推定される。

5.5 生物濃縮性

4-ビニル-1-シクロヘキセンは、化学物質審査規制法に基づきコイを用い、揮発性を考慮した装置を用いた 8 週間の濃縮試験で、水中濃度が 0.1 mg/L 及び 0.01 mg/L における濃縮倍率はそれぞれ 83 ～ 211 及び 110 ～ 208 であり、濃縮性がない、または低いと判定されている (通商産業省, 1985)。

6. 暴露評価

この章では、大気、公共用水域、飲料水、食物中濃度の測定データの収集、整理と、PRTR
排出量データから大気、河水中濃度の推定を行い、水生生物のリスク評価を行うための推定環境濃度（EEC）と、ヒト健康のリスク評価を行うための吸入経路及び経口経路の推定摂取量を決定する。

6.1 環境中濃度
6.1.1 環境中濃度の測定結果 ここでは、環境中濃度の測定報告について調査を行い、その結果について概要を示す。また得られた報告を基に、暴露評価で用いる濃度の採用候補を選定する。

a. 大気中の濃度
4-ビニル-1-シクロヘキセンの大気中濃度に関する報告は、調査した範囲内では得られていない。

b. 公共用水域中の濃度
4-ビニル-1-シクロヘキセンの公共用水域中濃度に関する報告は、調査した範囲内では得られていない。

c. 飲料水中的濃度
4-ビニル-1-シクロヘキセンの水道水中濃度及び地下水中濃度に関する報告は、調査した範囲内では得られていない。

d. 食物中の濃度
4-ビニル-1-シクロヘキセンの食物中濃度及び魚体内濃度に関する報告は、調査した範囲内では得られていない。

6.1.2 環境中濃度の推定 ここでは、数理モデルを用いて大気及び河川の濃度推定を行う。また食物に関する測定結果が得られなかったため、魚体内濃度の推定も行う。

a. 大気中濃度の推定
4-ビニル-1-シクロヘキセンの2003年度PRTR排出量データと広域大気拡散モデルAIST-ADMER Ver.1.5（産業技術総合研究所, 2005; 東野ら, 2003）を用いて、全国11地域（北海道、東北、北陸、関東、中部、東海、近畿、中国、四国、九州、沖縄）の大気中濃度を推定した。

大気への排出量分布の推定
届出データについては、事業所所在地を排出地点とし、メッシュデータによる排出量分布の推定を行った（製品評価技術基盤機構, 2006)。
計算条件
(計算条件設定に関する記述が抜けている)
数理モデル : AIST-ADMER Ver.1.5
計算対象地域 : 全国 (11地域) 5 km × 5 kmメッシュ
年間排出量 : 8トン (4.参照)
計算対象期間 : 1年
気象データ : アメダス気象年報 2003 (気象業務支援センター, 2005)
パラメータ : 雨による洗浄比
1) 5.5 × 10⁻¹
大気中の分解係数
2) 1.9 × 10⁻⁴ (1/s)
大気からの沈着速度定数
3) 0 (m/s)
バックグラウンド濃度
3) 0 (g/m³)

推定結果
各地域での推定値を表6-1に示す (製品評価技術基盤機構, 2006)。全国の年平均の最大値は、
東北地域における0.033 g/m³であった。

<table>
<thead>
<tr>
<th>計算対象地域</th>
<th>最小 (g/m³)</th>
<th>最大 (g/m³)</th>
<th>中央值 (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>北海道</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>東北</td>
<td>< 10⁻⁹</td>
<td>0.033</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>北陸</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>関東</td>
<td>< 10⁻⁹</td>
<td>8.0 × 10⁻³</td>
<td>1.8 × 10⁻⁹</td>
</tr>
<tr>
<td>中部</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>東海</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>近畿</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>中国</td>
<td>< 10⁻⁹</td>
<td>8.6 × 10⁻³</td>
<td>8.3 × 10⁻³</td>
</tr>
<tr>
<td>四国</td>
<td>< 10⁻⁹</td>
<td>0.027</td>
<td>6.0 × 10⁻⁴</td>
</tr>
<tr>
<td>九州</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
<tr>
<td>沖縄</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
<td>< 10⁻⁹</td>
</tr>
</tbody>
</table>

(製品評価技術基盤機構, 2006)
10⁻⁹ g/m³未満は < 10⁻⁹とした

b. 河川水中濃度の推定
4-ビニル-1-シクロヘキセンの2003年度PRTRデータ (届出排出量) から推定した全国における排出量 3 kg/年はすべて河川への排出量であった。

PRTR対象物質簡易評価システム (日本化学工業協会, 2002) を用いて、河川への排出量が最

1) (雨による洗浄比) = 気体定数8.314 (Pa・m³/(mol・K)) □絶対温度298 (K) □ヘンリー定数: 4540 (Pa・m³/mol)
 = 5.5 × 10⁻¹ (ヘンリー定数は 1参照)
2) (大気中の分解係数) = OHラジカルとの反応速度定数: 8.93 × 10⁻¹¹ (cm³/分子/秒) □ OHラジカル濃度: 5 × 10⁻⁴ (分子/cm³)
 + オゾンとの反応速度定数: 2.12 × 10⁻¹² (cm³/分子/秒) □ オゾン濃度: 7 × 10⁻¹³ (分子/cm³)
 = 1.9 × 10⁻⁴ (1/s) (反応速度定数及び濃度は 5.1 参照)
3) 乾性沈着及びバックグラウンド濃度に関する情報が得られなかったので 0 とした。
も多い事業所に着目し、その排出先である河川水中濃度を推定した。

計算法

数理モデル：PRTR 対象物質簡易評価システム
計算対象： 蛭田川（経済産業省, 2005b）
排出源から下流方向1 km
年間排出量：3 kg（経済産業省, 2005b）
計算対象期間：1年
年間平均河川流量：1.5 (m³/s)（福島県, 2003）
パラメータ： オクタノール/水分配係数 log Kow = 3.93（3. 参照）

蒸気圧 3,430 (Pa) (20 °C)（3. 参照）
水溶解度 50 (mg/L)（3. 参照）
生物分解速度定数 1) 1.6 × 10⁻⁸ (1/s)

推定結果

推定の結果、4-ビニル-1-シクロヘキセンの河川水中濃度は、0.064 ± g/L であった（製品評価技術基盤機構, 2006）。

c. 魚体内濃度の推定

4-ビニル-1-シクロヘキセンの魚体内濃度は、海域に生息する魚の体内に濃縮されると仮定し、海域中濃度と生物濃縮係数 (BCF) を乗じて魚体内濃度を推定する。ここでは海域中濃度が得られていなかったため、河川水中濃度が海域で 1/10 に希釈されると仮定して海域中濃度とした。なお、河川水中濃度は、測定結果の採用候補が得られていないため、推定結果の 0.064 ± g/L とした（6.1.2 b 参照）。

計算条件及び推定結果

海域中濃度：6.4 × 10⁻³ (0.064 ± 1/10) (± g/L)
生物濃縮係数：211 (L/kg)（5.5 参照）
魚体内濃度：6.4 × 10⁻³ (± g/L) × 211 (L/kg) = 1.4 (± g/kg)

魚体内濃度の推定結果は 1.4 ± g/kg であった。

6.2 水生生物生息環境における推定環境濃度

水生生物が生息する EEC を公共用水域の中の測定結果と河川水中濃度の推定結果から、決定する。EEC は、測定結果の採用候補が得られていないため、推定結果の 0.064 ± g/L とした（6.1.1 b, 6.1.2 b 参照）。

1) 生物分解速度定数 = log₂ (2 ÷ 半減期): 分解度が低い（5 参照）ことから 12,000 時間と仮定
 = 1.6 × 10⁻⁸ (1/s)
6.3 ヒトへの暴露シナリオ

6.3.1 環境経由の暴露

4-ビニル-1-シクロヘキセンの環境経由のヒトへの暴露経路は、呼吸による吸入暴露と飲料水及び食物からの経口暴露が主として考えられる。食物中の濃度に関する測定結果は得られていないため、ここでは食物として魚類のみを考慮する。

6.3.2 消費者製品経由の暴露

入手した用途情報からは、4-ビニル-1-シクロヘキセンの消費者製品からの暴露はないものと考えられるので、本評価書においては考慮しない（4.2 参照）。

6.4 ヒトの推定摂取量

本評価書において各経路からの摂取量を推定する際、成人の大気吸入量を 20 m³/人・日、飲料水摂水量を 2 L/人・日、魚類の摂食量を 120 g/人・日とした。

推定摂取量の算出は、以下の仮定に従って求めた。

大気からの摂取量推定に採用する大気中濃度は測定結果と推定結果から決定する。大気中濃度は、測定結果における採用候補が得られていないため、推定結果の 0.033 ℓ g/m³とした。

飲料水からの摂取量推定に採用する飲料水中濃度は、飲料水に関する測定結果が入手できなかったため河川水中濃度で代用する。ここでは河川水中濃度の推定結果から、飲料水中濃度を 0.064 ℓ g/L とした（6.1.1 c、6.2 参照）。

魚類からの摂取量推定に採用する魚体内濃度は、魚体内濃度の推定結果から 1.4 ℓ g/kg とした（6.1.2 c 参照）。

これらの仮定のもとに推定したヒトでの摂取量は、以下のとおりである。

大気からの摂取量：0.033 (ℓ g/m³) × 20 (m³/人・日) = 0.66 (ℓ g/人・日)

飲料水からの摂取量：0.064 (ℓ g/L) × 2 (L/人・日) = 0.13 (ℓ g/人・日)

魚類からの摂取量：1.4 (ℓ g/kg) × 0.12 (kg/人・日) = 0.17 (ℓ g/人・日)

成人の体重を平均 50 kg と仮定して、体重 1 kg あたりの摂取量を求めると次のようになる。

吸入摂取量：0.66 (ℓ g/人・日) / 50 (kg/人) = 0.013 (ℓ g/kg/日)

経口摂取量：(0.13 + 0.17) (ℓ g/人・日) / 50 (kg/人) = 0.0060 (ℓ g/kg/日)

合計摂取量：0.013 (ℓ g/kg/日) + 0.0060 (ℓ g/kg/日) = 0.019 (ℓ g/kg/日)

7. 環境中の生物への影響

7.1 水生生物に対する影響

7.1.1 微生物に対する毒性

調査した範囲内では、4-ビニル-1-シクロヘキセンの微生物に関する試験報告は得られていない。
7.1.2 藻類に対する毒性

4-ビニル-1-シクロヘキセンの藻類に対する毒性試験結果を表7-1に示す。

セレナストラムの生長阻害試験が報告されている。バイオマス及び生長速度によって算出した72時間EC50はともに13.9mg/L超、72時間NOECはそれぞれ7.68mg/L、13.9mg/L以上であった(環境省, 2001a)。この試験では助剤として界面活性剤(HCO-40)が使われている。

4-ビニル-1-シクロヘキセン海産種についての試験報告は得られていない。

表7-1 4-ビニル-1-シクロヘキセンの藻類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>試験法/方式</th>
<th>温度(℃)</th>
<th>エンドポイント</th>
<th>濃度(mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenastrum capricornutum1) (緑藻、セレナストラム)</td>
<td>OECD 201 GLP</td>
<td>23±2</td>
<td>生長阻害</td>
<td>>13.9</td>
<td>環境省, 2001a</td>
</tr>
<tr>
<td></td>
<td>止水</td>
<td></td>
<td>バイオマス</td>
<td>>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>閉鎖系</td>
<td></td>
<td>生長速度</td>
<td>>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>助剤2)</td>
<td></td>
<td>生長速度</td>
<td>>13.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>72時間EC50</td>
<td></td>
<td></td>
<td>7.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-48時間EC50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-72時間EC50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-72時間EC503)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72時間NOEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-48時間NOEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-72時間NOEC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0-72時間NOEC3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(m): 測定濃度、閉鎖系: 試験容器や水槽にフタ等をしているが、ヘッドスペースはある状態
1) 現学名: Pseudokirchneriella subcapitata, 2) ジメチルホルムアミド (25mg/L)+HCO-40 (75mg/L),
3) 文献をもとに再計算した値, 4) 暴露開始時の測定濃度により表示
太字はリスク評価に用いたデータを示す

7.1.3 無脊椎動物に対する毒性

4-ビニル-1-シクロヘキセンの無脊椎動物に対する毒性試験結果を表7-2に示す。

甲殻類のオオミジンコを用いた試験報告がある。急性毒性としては、遊泳阻害を指標とした48時間EC50が1.87mg/Lであった(環境省, 2001b)。長期毒性としては、21日間繁殖試験での繁殖を指標としたEC50が0.915mg/L、NOECが0.227mg/Lであった(環境省, 2001c)。以上の試験では助剤として界面活性剤(HCO-40, HCO-60)が使われている。

4-ビニル-1-シクロヘキセン海産種についての試験報告は得られていない。
表 7-2 4-ビニル-1-シクロヘキセンの無脊椎動物に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度（℃）</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td>24時間以内</td>
<td>人工調製水</td>
<td>8.0-8.3</td>
<td>24時間 EC₅₀, NOEC cyanobacteria</td>
<td></td>
</tr>
<tr>
<td>Daphnia magna (甲殻類、オオミジンコ)</td>
<td>生後24時間以内</td>
<td>OECD 202 GLP 半止水密閉助剤</td>
<td>19.9-20.0</td>
<td>人工調製水</td>
<td>8.0-8.3</td>
<td>24時間 EC₅₀, NOEC cyanobacteria</td>
<td>環境省, 2001b</td>
</tr>
</tbody>
</table>

7.1.4 魚類に対する毒性

4-ビニル-1-シクロヘキセンの魚類に対する毒性試験結果を表 7-3 に示す。

急性毒性として、メダカを用いた試験報告がある。測定濃度で算出した96時間LC₅₀は4.60mg/Lであった（環境省, 2001d）。また、48時間LC₅₀は17mg/Lであった（通商産業省, 1992）。これらの試験では助剤として界面活性剤（HCO-40）が使われている。

4-ビニル-1-シクロヘキセン海水魚及び長期毒性についての試験報告は得られていない。

表 7-3 4-ビニル-1-シクロヘキセンの魚類に対する毒性試験結果

<table>
<thead>
<tr>
<th>生物種</th>
<th>大きさ/成長段階</th>
<th>試験法/方式</th>
<th>温度（℃）</th>
<th>硬度 (mg CaCO₃/L)</th>
<th>pH</th>
<th>エンドポイント濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>淡水</td>
<td></td>
<td></td>
<td>96時間以内</td>
<td>人工調製水</td>
<td>8.0-8.3</td>
<td>96時間 LC₅₀</td>
<td>環境省, 2001d</td>
</tr>
<tr>
<td>Oryzias latipes (メダカ)</td>
<td>約0.2 g</td>
<td>JIS半止水密閉助剤</td>
<td>25</td>
<td>ND</td>
<td>48時間 LC₅₀</td>
<td>環境省, 2001d</td>
<td></td>
</tr>
</tbody>
</table>

太字はリスク評価に用いたデータを示す。

7.1.5 その他の水生生物に対する毒性

調査した範囲内では、4-ビニル-1-シクロヘキセンのその他の水生生物（両生類等）に関する試験報告は得られていない。
7.2 陸生生物に対する影響

7.2.1 微生物に対する毒性
調査した範囲内では、4-ビニル-1-シクロヘキセンの微生物（土壌中の細菌や菌類等）に関する試験報告は得られていない。

7.2.2 植物に対する毒性
調査した範囲内では、4-ビニル-1-シクロヘキセンの植物に関する試験報告は得られていない。

7.2.3 動物に対する毒性
調査した範囲内では、4-ビニル-1-シクロヘキセンの動物に関する試験報告は得られていない。

7.3 環境中の生物への影響（まとめ）
4-ビニル-1-シクロヘキセンの環境中の生物に対する毒性影響については、致死、遊泳阻害、生長阻害、繁殖などを指標に検討が行われている。海産生物や陸生生物に対する試験報告は得られていない。また、現時点で得られている4-ビニル-1-シクロヘキセンの毒性データは、いずれも助剤として界面活性剤が用いられているが、各試験とも公定法に従って実施され、算出されたLC₅₀やNOEC等はいずれも水への溶解度（50 mg/L）以下である。またほとんどの試験報告では4-ビニル-1-シクロヘキセンの揮発性も考慮されていることから有害性の評価に用いることが予想される。

淡水緑藻のセラナストラムを用いた生長阻害試験での72時間EC₅₀は13.9 mg/L超（バイオマス及び生長速度）であった。また、NOECは7.68 mg/L（バイオマス）及び13.9 mg/L以上（生長速度）であった。

甲殻類の急性毒性については、オオミジンコに対する48時間EC₅₀（遊泳阻害）が1.87 mg/Lであり、この値はGHS急性毒性有害性区分IIに相当し、強い有害性を示す。

長期毒性については、オオミジンコの繁殖を指標とした21日間NOECは0.227 mg/Lであった。

魚類に対する急性毒性については、メダカに対する96時間LC₅₀が4.60 mg/Lであり、この値はGHS急性毒性有害性区分IIに相当し、強い有害性を示す。4-ビニル-1-シクロヘキセン長期毒性に関する試験報告は得られていない。

以上から、4-ビニル-1-シクロヘキセンの水生生物に対する急性毒性は、甲殻類及び魚類に対してGHS急性毒性有害性区分IIに相当し、強い有害性を示す。長期毒性についてのNOECは、藻類では13.9 mg/L以上、甲殻類では0.227 mg/Lである。

得られた毒性データのうち水生生物に対する最小値は、甲殻類であるオオミジンコの繁殖を指標とした21日間NOECの0.227 mg/Lである。

8. ヒト健康への影響
8.1 生体内運命
4-ビニル-1-シクロヘキセンの生体内運命の試験結果を表8-1、動物における代謝経路を図8-1に示す（以下の括弧内数字は図8-1の代謝物に対応する）。

a. 吸収・分布

【エチレン-\(^{14}\)C】4-ビニル-1-シクロヘキセン（放射化学的純度：99％；比放射能：429.2 MBq/mmol, tert-プチルケトンール（酸化防止剤）添加）400 mg/kgをB6C3F\(_1\)雌マウスまたはF344 雌ラットに単回経口投与し、脂肪組織、皮膚、肝臓、血液、骨格筋での放射能分布量を、投与24時間後に測定した。投与量の1％以上が分布した組織は、マウスには認められず、ラットでは脂肪組織に投与放射能の3.4％、骨格筋と皮膚にそれぞれ1.1％が残留した。ラットには代謝物（詳細不明）の残留も確認された（マウスでは代謝物の残留の有無は不明）。両動物種とも卵巣への残留は微量（ラット：0.003％、マウス：0.001％）であった（Smith et al., 1990a）。

b. 代謝・排泄

in vitroの実験（Gervasi et al., 1980; Watabe et al., 1980, 1981）で4-ビニル-1-シクロヘキセン（\(\oplus\））はラットの肝ミクロソームの酵素類より代謝される。混合機能酸化酵素（MFO）により主要な代謝経路として4-ビニル-1,2-エポキシシクロヘキサン（\(\ominus\））が、一部は4-エポキシエチルシクロヘキセン（\(\oplus\））が生成し、\(\ominus\)及び\(\oplus\)からは微量の4-ビニルシクロヘキセンジエポキシド（\(\ominus\））が生成する。これらのエポキシドはエポキシド加水分解酵素（EH）により、対応するジオールとして\(\oplus\)からは4-ビニルシクロヘキサン-1,2-ジオール（\(\ominus\））、\(\ominus\)からは4-ジヒドロキシエチルシクロヘキセン（\(\oplus\））が生成する。その後、\(\ominus\)はMFOにより4-エポキシエチルシクロヘキサン-1,2-ジオール（\(\ominus\））、エポキシド加水分解酵素（EH）により、4-ジヒドロキシエチルシクロヘキサン-1,2-ジオール（\(\ominus\））に代謝される経路がある。また、\(\ominus\)はMFOにより4-ジヒドロキシエチル-1,2-エポキシシクロヘキサン（\(\ominus\））を経てEHにより、4-ジヒドロキシエチルシクロヘキサン-1,2-ジオール（\(\ominus\））に代謝される経路が確認されている。微量に生成するジエポキシドである\(\ominus\)もEHによりテトラオールの\(\ominus\)に代謝される。

【エチレン-\(^{14}\)C】4-ビニル-1-シクロヘキセン（放射化学的純度：99％；比放射能：429.2 MBq/mmol, tert-プチルケトンール（酸化防止剤）添加）400 mg/kgをB6C3F\(_1\)雌マウスまたはF344 雌ラットに単回経口投与した実験で、投与後24時間以内にマウスでは投与放射能の95％以上が体内から消失したが、ラットでは48時間を要した。両動物種とも投与48時間後までに、尿中に投与量の50～60％、呼気中30～40%、糞中に3～9%排出された。呼気中への排泄は投与後5時間以内であり、\(^{14}\)C二酸化炭素としての排泄はごく微量であることから、4-ビニル-1-シクロヘキセンは二酸化炭素に代謝されないと考えられる。なお、その他の呼気中に排泄された代謝物の同定は行われていない（Smith et al., 1990a）。

B6C3F\(_1\)雌マウスに4-ビニル-1-シクロヘキセンを0、7.5 mmol/kg/日（0、811 mg/kg/日）の用量で10日間腹腔内投与した実験で、全シクロホスンP450活性は投与期間終了5、10、15日後いずれても対照群に比べ上昇（35～83％）し、10日後にP450 2A、2B、2E\(_1\)の生成（Western blot 分析）及び肝ミクロソームにおける4-ビニル-1-シクロヘキセンのエポキシドへの代謝が促進された（Doerr-Stevens et al., 1999）。
マウスの肝臓ミクロソームで4-ピニル-1,2-エポキシシクロヘキサンを形成する速度は、ラットに比べ、ミクロソームタンパク質あたりで6.5倍、P450 あたりでは4倍である（Smith et al., 1990a）。

Swiss 雄マウスに4-ピニル-1-シクロヘキサンまたは4-ピニル-1,2-エポキシシクロヘキサン500 mg/kgを腹腔内投与した実験で、肝臓にシトクロム P450、シトクロム b5、NADPH 依存シトクロム c 還元酵素、アミノピリン-N-脱メチル酵素、EH の誘導が認められた。この際、4-ピニル-1-シクロヘキサン投与では、4-ピニル-1,2-エポキシシクロヘキサンの投与に比べ肝臓のグルタチオン濃度の減少がみられたことから、グルタチオンが4-ピニル-1-シクロヘキサンの代謝に関与している可能性があると推定された (Giannarini et al., 1981; U.S. NTP, 1986)。

4-ピニル-1-シクロヘキサン800 mg/kgをB6C3F1雌マウスまたはF344雌ラットに単回腹腔内投与した実験で、マウスでは投与2時間後に血中の4-ピニル-1-シクロヘキサン-1,2-エポキシドの濃度は最高 (4.4 μg/mL) になり、4-ピニル-1-シクロヘキサン-7,8-エポキシドは検出限界 (0.3 μg/mL) 以下であった。しかし、ラットの血中にはこれらの代謝物は認められなかった (Smith et al., 1990a)。

以下に、Hoyer et al. (2001) による4-ピニル-1-シクロヘキサンの卵巣毒性発現機序に関する知見のまとめを示す。

4-ピニル-1-シクロヘキサンの類縁体のうち、代謝されてモノエポキシドのみ生成するピニルシクロヘキサン、エチルシクロヘキサン、シクロヘキサンをマウスに30日間投与（用量不明）しても卵母細胞や卵胞の消失はみられなかったが、ジェチシクロシクロヘキサン、ジェチジェンシクロシクロヘキサン、イソプレンの投与ではマウスの卵母細胞、一次卵胞の消失を生じたことから、4-ピニル-1-シクロヘキサンが代謝されて生成する4-ピニルシクロヘキサンジエポキシド (VCD) が卵巣を損傷することが示唆された (Doerr et al., 1995)。マウスに4-ピニル-1-シクロヘキサンを反復投与すると、4-ピニル-1-シクロヘキサンは肝臓のP450 2a及び2bにより特異的にエポキシ化される (Smith et al., 1990b) が、卵巣にもこれらの代謝酵素が存在している (Hoyer et al., 2001) ので、卵巣でもエポキシ化が行われるものと考えられる (Bengstsson et al., 1983; Heinrichs and Juchau, 1980; Mukhtar et al., 1978a,b)。また、マウス及びラットの卵巣にはEH、グルタチオン-S-転移酵素、MFOが存在し、VCDなどのエポキシド類はこれらにより卵巣毒性を示さない物質に代謝される。4-ピニル-1-シクロヘキサンの卵巣毒性がマウスのみに現れるのでは、マウスではラットに比べ卵巣毒性を示すエポキシド類の代謝機能が高い一方、エポキシドを加水分解する酵素 (EH) の代謝機能やグルタチオン-S-転移酵素による代謝機能（抱合作用）が低いことによると考えられる (Bengstsson et al., 1983; Heinrichs and Juchau, 1980; Hoyer et al., 2001; Mukhtar et al., 1978a,b)。

4-ピニル-1-シクロヘキサンをマウスまたはラットに単回経口投与し、マウスでは、24時間後に1%以上が残留した組織はなかったが、ラットでは親化合物として脂肪組織に3.4%、骨格筋と皮膚にそれぞれ1.1%が残留し、代謝物としての残留も確認された。in vitroの代謝実験で、4-ピニル-1-シクロヘキサンは肝ミクロソームにより、4-ピニル-1,2-エポキシシクロヘキサン及び4-エポキシエチルシクロヘキサンに代謝され、いくつかの中間の代謝物を経て4-ジヒドロキシリシクロヘキサン-1,2-ジオールに代謝される。4-ピニル-1-シクロヘキサンの代謝物4-ピニル
シクロヘキセンジエポキシドは卵巣への毒性作用を有するものと考えられる。

図 8-1 4-ピニル-1-シクロヘキセンの代謝経路
（Gervasi et al., 1980; IARC, 1986; Watabe et al., 1981 より作成）

表 8-1 4-ピニル-1-シクロヘキセンの生体内運命

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与条件</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウスB6C3F1 雌</td>
<td>経口投与</td>
<td>400 mg/kg</td>
<td>24 時間後: 1% (投与放射能に対する割合, 以下同) 以上の残留（分布）組織; マウス：なし</td>
<td>Smith et al., 1990a</td>
</tr>
<tr>
<td>ラット</td>
<td>単回</td>
<td>429.2MBq /mmol, tert-プチルカテコール (酸化防止剤) 添 加</td>
<td>3.4%、骨格筋と皮膚にそれぞれ 1.1%、その他に代謝物。卵巣への残留はマウス、ラットいずれも微量 (ラット: 0.003%, マウス: 0.001%)</td>
<td></td>
</tr>
<tr>
<td>F 344 雌</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>動物種等</td>
<td>投与条件</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ラット マウス等</td>
<td>肝ミクロゾーム抽出物を用いた in vitro 代謝実験</td>
<td>ND</td>
<td>4-ビニル-1-シクロヘキサンは肝ミクロゾーム抽出物を用いた in vitro 代謝実験で、最終的に 4-ジヒドロキシエチルシクロヘキサン-1,2-ジオールを生成する。中間代謝生成物は図 8-1 に示す。</td>
<td>Gervasi et al., 1980; IARC, 1986; Watabe et al., 1981</td>
</tr>
<tr>
<td>マウス B6C3F1 雌 ラット F344 雄</td>
<td>経口投与 単回 [エチレン-14C]4-ビニル-1-シクロヘキサン (放射化学的純度: 99% 比放射能: 429.2MBq/mmol、 terr.-ブチルカテーテラル (酸化防止剤) 添加)</td>
<td>400 mg/kg</td>
<td>投与 24 時間以内の体内からの消失率: マウス: 投与量の 97% ラット: 投与量の 88%体内外 100% 体内の 30-60%、呼気中: 3-9% 呼気中からの放射能検出は 8 時間以内 (4-ビニル-1-シクロヘキサンは二酸化炭素には代謝されないと推定)</td>
<td>Smith et al., 1990a</td>
</tr>
<tr>
<td>マウス B6C3F1 雄 44-47 日齢</td>
<td>腹腔内投与 連続 10 日間 油溶: ゴマ油、対照群 2.5 mL/kg</td>
<td>0, 7.5 mmol/kg/日 (0, 811 mg/kg/日)</td>
<td>P450 全活性: 投与期間終了 5, 10, 15 日後に効果群に比べ上昇 (35-83%) P450 生合成の確認 (10 日後、Western blot 分析): 2A, 2B, 2E に上昇肝ミクロゾームによる4-ビニル-1-シクロヘキサンのエポキシド (4-ビニル-1-エポキシシクロヘキサン) への代謝の促進</td>
<td>Doerr-Stevens et al., 1999</td>
</tr>
</tbody>
</table>
| マウス、ラットの肝臓ミクロゾーム (n=4-5) | in vitro 試験肝臓ミクロゾームの 4-ビニル-1,2-エポキシシクロヘキサン生成速度比較 | 肝臓ミクロゾームに 4-ビニル-1,2-エポキシシクロヘキサン生成速度比較 | 4-ビニル-1,2-エポキシシクロヘキサンの生成速度

<table>
<thead>
<tr>
<th>種</th>
<th>nmol/分/mgミクロゾーム体質</th>
<th>nmol/分/nmol P450</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス</td>
<td>9.1±0.70**</td>
<td>6.6±0.25**</td>
</tr>
<tr>
<td>ラット</td>
<td>1.4±0.04</td>
<td>1.6±0.07</td>
</tr>
</tbody>
</table>

**: ラットに比べ p<0.002 で有意
マウス肝臓ミクロゾームの 4-ビニル-1,2-エポキシシクロヘキサン生成速度: ラットに比べ、ミクロゾームタンパクあたりで 6.5 倍、P450 あたりで 4 倍。 | Smith et al., 1990a |
| マウス Swiss、雄 | 腹腔内投与 4-ビニル-1-シクロヘキサン及び 4-ビニル-1,2-エポキシシクロヘキサン | 500 mg/kg | 肝臓: シトクロム P-450、シトクロム b5、NADPH-シトクロム c 遺伝子探素、アミノビリジン-A-脱メチル酵素、エポキシド水酸化酵素の誘導確認
4-ビニル-1-シクロヘキサン投与では4-ビニル-1,2-エポキシシクロヘキサン投与に比べ、肝臓のグルタチオン濃度の減少がみられ、グルタチオンが4-ビニル-1-シクロヘキサンの代謝に関与している可能性が推定された。 | Giannarini et al., 1981; U.S. NTP, 1986 |
| マウス B6C3F1、雌 ラット F344 雄 | 腹腔内投与 terr.-ブチルカテーテラル (酸化防止剤) 添加 | 800 mg/kg | マウス: 投与 2 時間後に血中の4-ビニル-1-シクロヘキサン-1,2-ジオキシドの濃度最高値 (4.4 μg/mL)、4-ビニル-1-シクロヘキサン-7,8-ジオキシドは検出限界 (0.3 μg/mL) 以下、ラット: 血中にこれらの代謝物は認められず | Smith et al., 1990a |
ND: データなし

8.2 疫学調査及び事例

調査した範囲内では、4-ビニル-1-シクロヘキセンの疫学調査及び事例に関する報告は得られていない。

8.3 実験動物に対する毒性

8.3.1 急性毒性

4-ビニル-1-シクロヘキセンの実験動物に対する急性毒性試験結果を表 8-2 に示す。

<table>
<thead>
<tr>
<th>投与経路</th>
<th>動物種</th>
<th>マウス</th>
<th>ラット</th>
<th>ウサギ</th>
</tr>
</thead>
<tbody>
<tr>
<td>経口LD₅₀ (mg/kg)</td>
<td>ND</td>
<td>2,600-3,080</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>吸入LC₅₀ (ppm)</td>
<td>10,610 (47,000 mg/m³)</td>
<td>6,100 (27,000 mg/m³)</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>経皮LD₅₀ (mg/kg)</td>
<td>ND</td>
<td>ND</td>
<td>17,000</td>
<td></td>
</tr>
</tbody>
</table>

ND: データなし

8.3.2 刺激性及び腐食性

剥毛したウサギの皮膚に4-ビニル-1-シクロヘキセン原液を適用した試験で、中等度の刺激性を認めたとする報告、ウサギの眼に4-ビニル-1-シクロヘキセンの原液0.5 mLを点眼し、角膜の狭い領域に壞死がみられたという報告（ACGIH, 1991; Smyth et al., 1969）があるが、詳細は不明である。

8.3.3 感作性

調査した範囲内では、4-ビニル-1-シクロヘキセンの実験動物に対する感作性に関する試験報告は得られていない。

8.3.4 反復投与毒性

4-ビニル-1-シクロヘキセンの実験動物における反復投与毒性試験結果を表 8-3 に示す。
a. 経口投与
1群5匹のB6C3F₁雌雄マウスに4-ビニル-1-シクロヘキセン 0、300、600、1,250、2,500、5,000 mg/kg/日（媒体：コーン油）を、14日間強制経口投与した試験で、いずれの投与群でも剖検で異常はみられず、病理組織学的検査（胃のみ検査）で胃には異常はみられなかった。1,250 mg/kg/日では死亡が雄に3/5匹みられ、2,500 mg/kg/日以上では雌雄全例が死亡した。1,250 mg/kg/日以上の死亡例では、死亡に至る一般状態観察で振戦がみられた（U.S. NTP, 1986）。

1群10匹のB6C3F₁雌雄マウスに4-ビニル-1-シクロヘキセン 0、75、150、300、600、1,200 mg/kg/日（媒体：コーン油）を、5日/週、13週間強制経口投与した試験で、1,200 mg/kg/日で死亡が雄に9/10匹、雌に5/10匹みられ、1,200 mg/kg/日で生存した雄1匹には体重増加抑制がみられた。病理組織学的検査（途中死亡例を含む）では、1,200 mg/kg/日で一次卵巣細胞数及び胞状卵巣細胞数の減少がみられ、雄3匹（いずれも途中死亡例）、雌1匹（剖検時）に急性胃炎がみられた（U.S. NTP, 1986）。卵巣に対する毒性は、代謝物である4-ビニルシクロヘキセンジエポキシドによると考えられる（Doerr et al., 1995; Hoyer et al., 2001）。

1群50匹のB6C3F₁雌雄マウスに4-ビニル-1-シクロヘキセン（純度：99%以上）0、200、400 mg/kg/日（媒体：コーン油）を、5日/週、2年間強制経口投与した試験で、死亡率の上昇が400 mg/kg/日で雄は29週以後、雌は32週以後にみられ、試験終了時の死亡率は、雄では対照群で9/46匹、200 mg/kg/日で11/50匹、400 mg/kg/日で41/48匹、雌は対照群で10/50匹、200 mg/kg/日で11/50匹、400 mg/kg/日で31/49匹であった。また、対照群に比べて体重の低値が、200 mg/kg/日の雄では28～60週、400 mg/kg/日の雄では8～76週にみられたが、試験終了時には雄の両投与群とも対照群と同じに、雌では400 mg/kg/日で20週以後にやや低値を示した。この試験は発がん性試験として実施されたが、病理組織学的検査のうち非腫瘍性病変所見として、200 mg/kg/日以上の雌雄に前胃に炎症、潰瘍、上皮過形成がみられ、雌雄の肺のうっ血、雌の副腎のうっ血及び副腎皮質の被膜下B細胞の過形成がみられ、400 mg/kg/日の雄で赤脾腫の萎縮がみられた（U.S. NTP, 1986）。

1群5匹のF344雌雄ラットに4-ビニル-1-シクロヘキセン 0、300、600、1,250、2,500、5,000 mg/kg/日（媒体：コーン油）を、14日間強制経口投与した試験で、1,250 mg/kg/日の用量で活発性低下、肛門周囲の濡れ、振戦、軟便、歩行異常がみられ、雌雄の全例が死亡した。その他の用量には被験物質投与の影響はみられず、胃の病理組織学的検査（胃のみ検査）で異常はみられなかった（U.S. NTP, 1986）。

1群10匹のF344雌雄ラットに4-ビニル-1-シクロヘキセン 0、50、100、200、400、800 mg/kg/日（媒体：コーン油）を、5日/週、13週間強制経口投与した試験で、死亡が800 mg/kg/日で雌に1/10匹、400 mg/kg/日で雄に1/10匹みられ、50 mg/kg/日以上の雄のみに腎曲尿細管の硝子滴変性（800 mg/kg/日以外は軽微の変性）、800 mg/kg/日で雌1匹、雌3匹に前胃粘膜下繊の限局性好中球浸潤及び慢性浮腫がみられた。なお、本試験の病理組織学的検査は胃と腎臓のみで実施された（U.S. NTP, 1986）。著者者は腎臓の曲尿細管硝子滴変性は800 mg/kg/日以外は軽微であるとしているため、本評価書はこの試験のNOAELを、死亡を指標として200 mg/kg/日であると考えた。

1群50匹のF344雌雄ラットに4-ビニル-1-シクロヘキセン（純度：99%以上）0、200、400 mg/kg/日（媒体：コーン油）を、5日/週、2年間強制経口投与した試験で、雄の死亡率の上昇が、200
mg/kg/日は 88 週以後、400 mg/kg/日は 5 週以後にみられた。試験終了時の死亡率は雄では対照群で 16/49 匹、200 mg/kg/日で 37/50 匹、400 mg/kg/日で 42/47 匹、雌では対照群で 10/50 匹、200 mg/kg/日で 21/49 匹、400 mg/kg/日で 35/48 匹であったが、13 週間投与試験に比べての雄 400 mg/kg/日でみられた高死亡率の原因は不明である。400 mg/kg/日の雄では、72 週以後には体重の低値（5〜14%）がみられた。病理組織学的検査のうち非腫瘍性所見として、前胃に上皮細胞の過形成が 200 mg/kg/日以上でみられた (U.S. NTP, 1986)。

b. 吸入暴露

B6C3F1 マウス (1 群雌雄各 10 匹) に 4-ピニル-1-シクロヘキセン 0、50、250、1,000 ppm (0、225、1,125、4,500 mg/m³) を 6 時間/日、5 日/週、13 週間吸入暴露し、1,000 ppm 群では暴露開始 11〜12 日目に 雄 10/10 匹、雌 5/10 匹、その後、雌 3 匹が死亡した。死亡に至る一般状態として嗜眠が、病理組織学的検査で卵巣の萎縮 (5/10 匹) がみられた。著者はこの試験の NOAEL を 250 ppm としている (Bevan et al., 1996)。

SD ラット (1 群雌雄各 10 匹) に 4-ピニル-1-シクロヘキセン 0、250、1,000、1,500 ppm (0、1,125、4,500、6,750 mg/m³) を 6 時間/日、5 日/週、13 週間吸入暴露した試験で、1,500 ppm 群では雌雄に嗜眠の有意な増加 (250 ppm の一部の雄にも観察されたが、1,000 ppm ではみられていない)、体重増加の有意な抑制及び雌で有意な低体重がみられた。血液学的検査、血液生化学検査及び尿検査では暴露の影響はみられなかったが、1,500 ppm 群で雌雄の肝臓の絶対及び相対重量増加、雄の腎臓の相対重量増加がみられ、雄の 250 ppm 以上で腎臓細管の硝子滴蓄積がみられた。しかし著者は、250 ppm の一部の雄でみられた嗜眠、250 ppm 以上の雌でみられた腎臓細管の硝子滴蓄積及び雌の 1,500 ppm でみられた卵巣萎縮 (2/10) は 4-ピニル-1-シクロヘキセン暴露の影響ではないと判断し、NOAEL を 1,000 ppm とした (Bevan et al., 1996)。

以上、経口投与では、一般毒性学的な試験設計による報告はなく、発がん性試験またはその予備試験のみである。4-ピニル-1-シクロヘキセンのラットを用いた 13 週間強制経口投与試験 (発がん性試験予備試験) (U.S. NTP, 1986) で、400 mg/kg/日以上の用量で死亡がみられ、この試験の NOAEL は 200 mg/kg/日と考えられた。また、発がん性試験として実施されたマウスの 2 年間経口投与発がん性試験は、死亡例の多発した条件ではあるが、200 mg/kg/日（最低用量）以上で、前胃に炎症、潰瘍、上皮過形成・肺のうっ血、副腎のうっ血、副腎皮質の過形成がみられたことから、LOAEL を 200 mg/kg/日と判断した。吸入暴露では、マウスを用いた 13 週間試験 (Bevan et al., 1996) で、1,000 ppm の暴露濃度で、嗜眠、死亡、卵巣の萎縮がみられ、吸入暴露の NOAEL を 250 ppm (1,125 mg/m³) と判断した。

<table>
<thead>
<tr>
<th>様品名</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス</td>
<td>B6C3F1</td>
<td>4日間</td>
<td>0、300、600、1,250、2,500、5,000 mg/kg/日</td>
<td>300 mg/kg/日以上: 割検で異常なし。胃の組織学検査で異常なし (胃のみの検査)</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td>8 週齢雌雄各5匹群</td>
<td>経口投与 (強制)</td>
<td></td>
<td>1,000 ppm</td>
<td>1,250 mg/kg/日以上: 振戦死亡</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/10</td>
<td></td>
<td>1,500 ppm</td>
<td>0/5</td>
<td></td>
</tr>
<tr>
<td>動物種等</td>
<td>投与方法</td>
<td>投与期間</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>マウス B6C3F1 8 週齢 雌雄各10匹/群</td>
<td>経口投与 (強制) 5日/週 媒体: コーン油</td>
<td>13週間</td>
<td>0, 75, 150, 300, 600, 1,200 mg/kg/日 純度: 99%以上</td>
<td>死亡 (試験終了時までの累積数): 0, 75, 150, 300, 600, 1,200 mg/kg/日: それぞれ0, 0, 0, 0, 0, 9匹; 雌: 0, 0, 1, 2, 2, 5匹 (いずれも10匹中) 1,200 mg/kg/日: 4匹 (生検例)</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td>マウス B6C3F1 8 週齢 雌雄各50匹/群</td>
<td>経口投与 (強制) 5日/週 媒体: コーン油</td>
<td>2年間</td>
<td>0, 200, 400 mg/kg/日 純度: 99%以上</td>
<td>死亡率: 400 mg/kg/日: 雄 29週以后、雌 32週以后</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ラット F344 7 週齢 雌雄各5匹/群</td>
<td>経口投与 (強制) 7日/週 媒体: コーン油</td>
<td>14日間</td>
<td>0, 300, 600, 1,250, 2,500, 5,000 mg/kg/日 純度: 99%以上</td>
<td>1,250 mg/kg/日: 2週以降、1,250 mg/kg/日: 雌雄全例死亡</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td>動物種等</td>
<td>投与方法</td>
<td>投与期間</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ラット F344 7 週齢雌雄各10匹/群</td>
<td>経口投与(強制) 5日/週 媒体: コーン油</td>
<td>13週間</td>
<td>0, 50, 100, 200, 400, 800 mg/kg/日</td>
<td>死亡: 400 mg/kg/日 雄 1/10, 800 mg/kg/日 雌 1/10匹 体重: 雄: 用量依存的増加抑制、最終体重: 800 mg/kg/日 雄: 対照群の 87%, 雌: 対照群の 94% 50 mg/kg/日以上: 雄のみ腎尿細管の硝子沈着性 (800 mg/kg/日以外はく軽度) 800 mg/kg/日: 雄1匹, 雌3匹, 前胃粘膜下癌の局性好中球浸潤及び慢性浮腫 病理組織学検査は雄の腎臓と雌雄の胃は雌雄全群の全動物で実施、これ以外の組織は対照群と800 mg/kg/日で実施、血液検査、血液性化学検査はすべての用量で実施されていない。 NOAEL: 200 mg/kg/日 (本評価書の判断)</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td>ラット F344 7 週齢 1群雌雄各50匹</td>
<td>強制経口投与 5日/週 媒体: コーン油</td>
<td>2年間</td>
<td>0, 200, 400 mg/kg/日 純度: 99%以上</td>
<td>死亡率: 雄: 200 mg/kg/日: 88週以後 (102週のみ有意) 上昇, 400 mg/kg/日: 5週以後上昇 全期間通算: 雄: 対照群: 16/49, 200 mg/kg/日: 37/50, 400 mg/kg/日: 42/47 雌: 対照群: 10/50, 200 mg/kg/日: 21/49, 400 mg/kg/日: 35/48 13週間投与試験 (U.S. NTP, 1986) に比べ雄の死亡率は高 (原因不明) 体重: 400 mg/kg/日: 雄 ほぼ72週以後対照群に比べ5-14%低値 病理組織学的所見 (非腫瘍性): 用量(mg/kg) 0 200 400 雄 前胃上皮細胞過形成 1/50 3/50 5/47</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td>マウス B6C3F1 1群雌雄各10匹 22日齢</td>
<td>吸入暴露</td>
<td>13週間 6時間/日, 5日/週</td>
<td>0, 50, 250, 1,000 ppm (0, 225, 1,125, 4,500 mg/m³)</td>
<td>1,000 ppm: 嗜眠、死亡 (暴露開始11-12日目 雄10/10匹, 雌5/10匹, その後 雄3匹死亡, 卵巣の萎縮 (5/10匹) NOAEL: 250 ppm</td>
<td>Bevan et al., 1996</td>
</tr>
<tr>
<td>ラット SD 1群雌雄各10匹 22日齢</td>
<td>吸入暴露</td>
<td>13週間 6時間/日, 5日/週</td>
<td>0, 250, 1,000, 1,500 ppm (0, 1,125, 4,500, 6,750 mg/m³)</td>
<td>一般状態: 250 ppm 雄及び1,500 ppm雌雄、嗜眠増加 体重: 1,500 ppm 低体重 (雄), 体重増加の抑制 (雌 雄) 血液/血液生化学/尿検査: 影響なし 腎器重量: 1,500 ppm 肝臓消化・相対重量増加 (雌雄), 腎臓相対重量増加 (雄のみ) 病理組織学的検査: 雄: 250 ppm 以上 腎臓近位尿細管硝子沈着 (著者は脳実質増大の影響ではないとしている), 雌: 1,500ppm: 卵巣の萎縮 (2/10匹, 著者は脳実質増大の影響ではないとしている。) NOAEL: 1,000 ppm</td>
<td>Bykov, 1968</td>
</tr>
<tr>
<td>マウス ラット</td>
<td>吸入暴露</td>
<td>4か月 6時間/日</td>
<td>226 ppm</td>
<td>体重増加の抑制 白血球增多症, 白血球減少症, 血行障害</td>
<td>Bykov, 1968</td>
</tr>
<tr>
<td>動物種等</td>
<td>投与方法</td>
<td>投与期間</td>
<td>投与量</td>
<td>結果</td>
<td>文献</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>---------------</td>
</tr>
<tr>
<td>マウス</td>
<td>腹腔内投与</td>
<td>30日間</td>
<td>0, 650 mg/kg</td>
<td>投与群:小卵胞数及び成長期卵胞 (growing follicle) 数の減少を確認、血漿中卵胞刺激ホルモン (FSH) 濃度には対照群との差なし</td>
<td>Hooser et al., 1993</td>
</tr>
<tr>
<td>B6C3F1雄</td>
<td>腹腔内投与</td>
<td>30日間</td>
<td>0, 800 mg/kg</td>
<td>投与群:精巣の重量、精巣の病理組織学的検查、血漿中卵胞刺激ホルモン (FSH) 濃度に 対照群との差なし</td>
<td>DeMerell et al., 1992; IARC, 1994</td>
</tr>
<tr>
<td>4-6週齢 雄雄各10匹群</td>
<td>腹腔内投与</td>
<td>30日間</td>
<td>0, 100, 400, 800 mg/kg/日</td>
<td>卵巣組織の観察のみ実施 100 mg/kg/日以上:一次卵胞 (primordial follicle) 数の減少 400 mg/kg/日以上: 胞状卵胞 (antral follicle)、成 長卵胞 (growing follicle) の減少</td>
<td>Smith et al., 1991</td>
</tr>
</tbody>
</table>

太字はリスク評価に用いたデータを示す。

8.3.5 生殖・発生毒性

4-ビニル-1-シクロヘキセンの実験動物に対する生殖・発生毒性試験結果を表8-4に示す。

雌雄のSwiss ICRマウス（親: 対照群 40匹/性、投与群 20匹/性、児: 使用動物数不明）に、 連続投与の試験計画（U.S. NTP, 1989）に基づき、4-ビニル-1-シクロヘキセン（純度不明）0、100、 250、500 mg/kg/日を制限量内投与した試験で、いずれの用量でもF₀及びF₁の生殖能（受胎率、 産児数、生存産児数、産児生存率）への影響はなかった。500 mg/kgでは、F₁雌親及びF₁雌雄親 の体重減少（対照群のいずれも92%）、F₁児の体重減少（対照群の96%）がみられた。さらにF₁ 雌雄親では、肝臓相対重量増加（対照群との比: 雄109%、雌108%）、精巣内精子数減少（対照 群との比: 83%、精巣上体精子数正常、精巣、精巣上体重量正常）、一次卵母細胞数減少（対 照群との比: 67%）、成長期卵母細胞数減少（対照群との比: 45%）、胞状卵母細胞数減少（対照群 との比: 67%）がみられ、このほかに精子の運動性低下がみられたが、著者は生物学的意義はな いと述べている。なお、卵巣重量、性周期に対する影響はなかった（Grizzle et al., 1994; U.S. NTP, 1989）

以上、Swiss ICRマウスを用いた連続投与の試験においていずれの用量でもF₀及びF₁の生殖能 への影響はみられなかった。したがってこの試験のみでは4-ビニル-1-シクロヘキセンの生殖・ 発生毒性のNOAELは判断できない。
表 8-4 4-ビニル-1-シクロヘキセンの生殖・発生毒性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与/試験方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス</td>
<td>経口投与 (強制)</td>
<td>0.6, 15週間 (F₁)</td>
<td>F₂及びF₃: 生殖機能 (受胎率、転倒数、生存産児数、産児生存率) に影響なし</td>
<td>500 mg/kg/日:</td>
<td>Grizzle, et al., 1994</td>
</tr>
<tr>
<td>Swiss ICR 雌雄</td>
<td>溶媒:コーン油</td>
<td></td>
<td></td>
<td></td>
<td>U.S. NTP, 1989</td>
</tr>
<tr>
<td>対照群:</td>
<td>40匹/性</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>投与群:</td>
<td>20匹/性</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.3.6 遺伝毒性
4-ビニル-1-シクロヘキセンの遺伝毒性試験結果を表 8-5 に示す。

in vitro
4-ビニル-1-シクロヘキセン (500 μg/mL) をネズミミチフス菌にプレインキュベーション法を用いて暴露した試験で、S9 添加の有無に関わらず再帰変異性は陰性であった (IARC, 1994; Zeiger et al., 1987)。

4-ビニル-1-シクロヘキセン 3.3～1,000 μg/plate をネズミミチフス菌にプレインキュベーション法を用いて暴露した試験で、S9 添加の有無に関わらず再帰変異性は陰性であった (U.S. NTP, 1986)。

in vivo
B6C3F₁マウス及びSDラットに6時間/日、2日間または13週間吸入暴露し、骨髄細胞を検査
する小核試験ではいずれも陰性であった (Bevan et al., 2001)。

以上のように、4-ビニル-1-シクロヘキセンの遺伝毒性試験のうちネズミチフス菌を用いた復帰突然変異試験の2報はいずれも陰性であり、マウス、ラットを用いた in vivo 小核試験でも陰性であった。しかし、実施された試験の種類と数は少なく、4-ビニル-1-シクロヘキセンの遺伝毒性が陰性であるとは、現在のところ判断できない。

<table>
<thead>
<tr>
<th>表 8-5 4-ビニル-1-シクロヘキセンの遺伝毒性試験結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験名</td>
</tr>
<tr>
<td>in vitro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>in vivo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>a) - : 陰性 (b) : 最大用量</td>
</tr>
</tbody>
</table>

8.3.7 発がん性

4-ビニル-1-シクロヘキセンの実験動物に対する発がん性試験結果を表 8-6 に示す。

B6C3F1マウスの雌雄 (8 週齢、50 匹/群) に 4-ビニル-1-シクロヘキセン (純度: 99%以上) 0、200、400 mg/kg/日をコーヌ液に溶解し、2年間経口投与した試験で、死亡率の上昇が 400 mg/kg/日の雌では投与開始 29 週以後、雄では 32 週以後みられ、試験終了時死亡率は、雄では対照群は 9/46 匹、200 mg/kg/日では 11/50 匹、400 mg/kg/日では 41/48 匹、雌では対照群は 10/50 匹、200 mg/kg/日では 11/50 匹、400 mg/kg/日では 31/49 匹であった。なお、死因は特定できていない。病理組織学的所見としては、雌にのみ変化が認められ、卵巢の良性混合腫瘍 (対照群: 0/49 匹、200 mg/kg/日: 25/48 匹、400 mg/kg/日: 11/47 匹) 及び顆粒膜細胞腫 (対照群: 1/49 匹、200 mg/kg/日: 9/48 匹、400 mg/kg/日: 11/47 匹) の発がん性が示唆された。
て発がん性を示すが、副腎の被膜下腺腫は卵巣の発がんによる卵巣機能の低下により生じた二次的な影響であると考えられた。卵巣及び卵巣発がんの二次的な影響としての副腎以外には、4-ビニル-1-シクロへキセン投与によると考えられる発がんはみられなかった (U.S. NTP, 1986)。

F344ラットの雌雄 (7週齢、50匹/群) に4-ビニル-1-シクロへキセン (純度: 99%以上) 0、200、400 mg/kg/日をコーン油に溶解し、2年間経口投与した試験で、死亡率の上昇が雄の 200 mg/kg/日では投与開始 88 週以後、400 mg/kg/日の投与開始 5 週以後みられた。なお、死因は特定されていない。病理組織学的所見として、雄には皮膚に扁平上皮乳頭腫/扁平上皮がん（対照群: 0/50 匹、200 mg/kg/日: 1/50 匹、400 mg/kg/日: 4/50 匹）、陰核腺に腺腫/扁平上皮がん（対照群: 1/50 匹、200 mg/kg/日: 5/50 匹、400 mg/kg/日: 0/49 匹）、膀胱に移行上皮乳頭腫/がん（対照群: 1/50 匹、200 mg/kg/日: 1/49 匹、400 mg/kg/日: 1/47 匹）等がみられた。死因は不明であるが、両投与群で投与開始初期（雄のみ）及び全期間を通じ（雌雄）、死亡率の増加がみられたこと及び発がんを確認できる事実（evidence）はないことから、著者は本試験を「発がん性試験として不適切」に分類した (U.S. NTP, 1986)。

Swiss / Millerton マウスの雄 (8 週齢、30 匹/群) に 4-ビニル-1-シクロヘキセン (純度不明) 0、45 mg/kg/日を 50%ベンゼン溶液に溶解し、0.1mL を 3 回/週の頻度で、生涯にわたり経皮 (剪毛背部皮膚) 投与した試験で、生存日数中央値 (median survival time) は 375 日であり、皮膚腫瘍は 6/30 匹に発生した (p=0.04)（内訳: 扁平上皮がん: 1/30 匹、扁平上皮乳頭腫: 5/30 匹）。対照群には皮膚腫瘍は 11/150 匹（内訳: 皮膚の扁平上皮がん: 1/150 匹、皮膚の扁平上皮乳頭腫: 10/150 匹）発生した (IARC, 1986; Van Duuren et al., 1963)。なお本試験は試験期間中に、マウスの皮膚の壊死、四肢末梢の脱落などを起こすエクトロメリアウィルスに感染し、ワクチン投与で治療したとの記載がある (岩井, 1990) ことから、本評価書は本試験報告の信頼性は低いと判断した。

Swiss / Millerton マウスの雌 (30 匹) に 4-ビニル-1-シクロヘキセン (純度不明) 9 mg/kg/日 (10%ベンゼン溶液 0.1mL、投与被験物質を酸素を含まないように調製、詳細不明) を 3 回/週で、生涯にわたり経皮 (剪毛背部皮膚) 投与した試験で、投与部位の皮膚を含むいずれの器官、組織にも、発がんはみられなかった (IARC, 1986; Van Duuren, 1965)。

以上から 4-ビニル-1-シクロヘキセンはマウスへの経口投与で雌に卵巣の発がん及び卵巣の病変に伴う副腎への発がんがみられたこと (U.S. NTP, 1986) から、本評価書は 4-ビニル-1-シクロヘキセンは発がん性を示すと判断する。ラットの卵巣に対する発がんは、得られた報告の範囲からはみられず、マウスはラットに比べ、4-ビニル-1-シクロヘキセンをジエポキシドに代謝する機能は高いが、ジエポキシドをさらに代謝する機能は低い (8.1.b 参照) ことによると考えられる。

4-ビニル-1-シクロヘキセンの国際機関等での発がん性評価を表 8-7 に示す。

表 8-6 4-ビニル-1-シクロヘキセンの発がん性試験結果

<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結 果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>マウス B6C3F1</td>
<td>強制経口投与</td>
<td>2年間</td>
<td>0、200、400 mg/kg/日</td>
<td>死亡率: 上昇 (死因不明)</td>
<td></td>
</tr>
<tr>
<td>8 週齢雌雄各50匹/群</td>
<td></td>
<td></td>
<td></td>
<td>400 mg/kg/日: 雄 29週以後、雌 32週以後</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>試験期間過算:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄: 対照群: 9/46、200 mg/kg/日: 11/50、400 mg/kg/日: 41/48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雌: 対照群: 10/50、200 mg/kg/日: 11/50、400 mg/kg/日: 31/49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>体重: 低値 (対照群との比較)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄: 200 mg/kg/日: 28-60週</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 mg/kg/日: 8-76週</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>試験終了時体重</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄: 各投与群: 対照群と同等</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雌: 400 mg/kg/日 20週以後、やや低値 (対照群との比較)</td>
<td></td>
</tr>
<tr>
<td>病理組織学的所見 (腫瘍性病変):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>用量 (mg/kg)</td>
<td>0</td>
<td>200</td>
<td>400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>雌</td>
<td>良性混合腫瘍</td>
<td>0/49</td>
<td>25/48*</td>
<td>11/47*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>颗粒細胞腫</td>
<td>1/49</td>
<td>9/48*</td>
<td>11/47*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>颗粒細胞腫 /顆粒細胞 がん (混合)</td>
<td>1/49</td>
<td>10/48*</td>
<td>13/47*</td>
<td></td>
</tr>
<tr>
<td>卵巣</td>
<td>被膜下腺腫</td>
<td>0/50</td>
<td>3/49*</td>
<td>4/48*</td>
<td></td>
</tr>
</tbody>
</table>

*: Mantel & Haenszel (1959) の検定で対照群と比較し有意に増加 (P<0.01)
#: 生命表検定 (Life Table Tests) で有意 | 0 mg/kg P=0.005 200 mg/kg P=0.117 400 mg/kg P=0.011

雌の卵巣及び副腎の所見は発がん性を示すが、これ以外は、4-ビニル-1-シクロヘキセン投与による発がん性は確認できず。副腎被膜下腺腫は卵巣顆粒細胞腫/がんの発生に伴う卵巣機能の低下に起因した二次的影響と判断 (著者)
<table>
<thead>
<tr>
<th>動物種等</th>
<th>投与方法</th>
<th>投与期間</th>
<th>投与量</th>
<th>結果</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>ラット</td>
<td>強制経口投与</td>
<td>2年間</td>
<td>0, 200, 400mg/kg/日</td>
<td>死亡率: 上昇 (死因不明)</td>
<td>U.S. NTP, 1986</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄: 200 mg/kg/日: 88週以後 (102週のみ有意)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400 mg/kg/日: 5週以後</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>訓練週間通算:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄: 対照群: 16/49, 200 mg/kg/日: 37/50, 400 mg/kg/日: 42/47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雌: 対照群: 10/50, 200 mg/kg/日: 21/49, 400 mg/kg/日: 35/48</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13週間投与 (U.S. NTP, 1986) に比べた雄の</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>高死亡率 (死因不明)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>体重: 400 mg/kg/日: 雄 ほぼ72週以後対照群に比べ</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5-14%低値</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>病理組織学的所見 (腫瘍性変)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>用量 (mg/kg)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>雄</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>皮膚</td>
<td>扁平上皮乳頭癌/扁平上皮がん</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>陰核腺</td>
<td>腫瘍/扁平上皮がん</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>腸腺</td>
<td>移行上皮乳頭癌/がん</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>上記所見その他から、4-ビニル-1-シクロヘキシレン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>投与による発がんと確定できる事実なく、初期</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(雄のみ) 及び全期間通算の死亡率が高く、発がん</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>性の有無を判断できず (著者)</td>
<td></td>
</tr>
<tr>
<td>マウス</td>
<td>維皮投与 (背部剪毛皮膚)</td>
<td>生涯 3回/週</td>
<td>0, 45mg/匹/日</td>
<td>対照群:</td>
<td>IARC, 1986; Van Duuren et al., 1963</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>皮膚腫瘍: 11/150 (内訳: 扁平上皮がん: 1/150, 扁平上皮乳頭癌: 10/150)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>暴露群:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>生存日数中央値 (median survival time): 375日</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>皮膚腫瘍: 6/30 (p=0.04) (内訳: 扁平上皮がん:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1/30, 扁平上皮乳頭癌: 5/30)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>エクトロメリアウィルス感染症の発生とそのワクチン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>治療実施の記載があるため、本試験報告の信頼性は</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>低い (本評価書の判断)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>エクトロメリアウィルス感染症の発生とそのワクチン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>治療実施の記載があるため、本試験報告の信頼性は</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>低い (本評価書の判断)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>エクトロメリアウィルス感染症の発生とそのワクチン</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>治療実施の記載があるため、本試験報告の信頼性は</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>低い (本評価書の判断)</td>
<td></td>
</tr>
</tbody>
</table>

27
表 8-7 国際機関等での 4-ピニル-1-シクロヘキセンの発がん性評価

<table>
<thead>
<tr>
<th>機関/出典</th>
<th>分 類</th>
<th>分 類 基 準</th>
</tr>
</thead>
<tbody>
<tr>
<td>IARC (2004)</td>
<td>グループ 2B</td>
<td>ヒトに対して発がん性がある可能性がある物質。</td>
</tr>
<tr>
<td>ACGIH (2004)</td>
<td>A3</td>
<td>ヒトの関連性は不明であるが、実験動物で発がん性が確認された物質。</td>
</tr>
<tr>
<td>日本産業衛生学会 (2004)</td>
<td>第 2 群 B</td>
<td>人間に対しておそらく発がん性があると考えられる物質である。説明が比較的十分ではない物質。</td>
</tr>
<tr>
<td>U.S. NTP (2002)</td>
<td>-</td>
<td>発がん性について評価されていない。</td>
</tr>
</tbody>
</table>

8.4 ヒト健康への影響（まとめ）

4-ピニル-1-シクロヘキセンをマウスまたはラットに単回経口投与し、マウスでは、24 時間後に 1%以上が残留した組織はなかったが、ラットでは親化合物として脂肪組織に 3.4%、骨格筋と皮膚にそれぞれ 1.1%が残留し、代謝物としての残留も確認された。in vitro の代謝実験で、4-ピニル-1-シクロヘキセンは肝ミクロソームにより、4-ピニル-1,2-エポキシシクロヘキサン及び4-エポキシエチルシクロヘキセンに代謝され、いくつかの中間の代謝物を経て 4-ジヒドロキシエチルシクロヘキセン-1,2-ジオールに代謝される。4-ピニル-1-シクロヘキセンの卵巣への毒性（マウス）作用は、その代謝物 4-ピニルシクロヘキセンジエポキシドによると考えられる。

ヒトの4-ピニル-1-シクロヘキセンへの暴露に関する疫学調査報告は得られなかった。

急性毒性試験で、経口投与LD₅₀は、ラットで 2,600〜3,080 mg/kg、吸入暴露LC₅₀は、マウスで 10,610 ppm、ラットで 6,100 ppm、経皮投与LD₅₀は、ウサギで 17,000 mg/kgである。

刺激性について、ウサギの皮膚に4-ピニル-1-シクロヘキセンは中等度の刺激性を示し、眼の角膜に壊死を生じ腐食性を示す。また、蒸気またはミストは眼、粘膜、上部気道に刺激性を示す。調査した範囲内では、感作性に関する試験報告は得られていない。

経口投与では、マウスを用いた 2 年間経口投与発がん性試験は、200 mg/kg/日（最低用量）以上で、前胃に炎症、潰瘍、上皮形成、肺のうっ血、副腎のうっ血、副腎皮質の過形成がみられたことから、LOAEL を 200 mg/kg/日と判断した。吸入暴露では、マウスを用いた 13 週間試験で、1,000 ppm以上の暴露濃度で、嗜眠、死亡、卵巢の萎縮がみられ、吸入暴露のNOAEL を 250 ppm (1,125 mg/m³) と判断した。

4-ピニル-1-シクロヘキセンの生殖・発生への影響は、マウスを用いた連続交配試験で F₀世代及び F₁世代いずれにもみられなかった。

4-ピニル-1-シクロヘキセンの遺伝毒性試験のうち、ネズミチフス菌を用いた復帰突然変異試験の 2 報はいずれも陰性であり、マウス、ラットを用いた in vivo 小核試験でも陰性であったが、実施された試験の種類と数は少ないため、4-ピニル-1-シクロヘキセンの遺伝毒性が陰性であるとは断定できない。

9. リスク評価

9.1 環境中の生物に対するリスク評価

環境中の生物に対するリスク評価は、水生生物を対象とし、その影響を3つの栄養段階（藻類・甲殻類・魚類）で代表させる。リスク評価は、無影響濃度等（NOEC、LC、EC）を推定環境濃度（EEC）で除した値である暴露マージン（MOE）と、無影響濃度等として採用した試験データに関する不確実係数値を比較することにより行う。

9.1.1 リスク評価に用いる推定環境濃度

本評価書では、4-ビニル-1-シクロヘキサンの公共用水域での測定結果が得られなかったため、4-ビニル-1-シクロヘキサンのEECを、PRTR対象物質簡易評価システムによって推定された値である0.064 g/Lとした（6.2参照）。

9.1.2 リスク評価に用いる無影響濃度

リスク評価に用いる4-ビニル-1-シクロヘキサンの水生生物に対する無影響濃度等を表9-1に示す。3つの栄養段階（藻類・甲殻類・魚類）のうち、藻類及び甲殻類については長期毒性試験結果（環境省、2001a,c）、魚類については急性毒性試験結果（環境省、2001d）を用いた（7参照）。これらの試験はいずれも界面活性作用のある助剤を用いて試験濃度を調整しているが、水溶解度（50 mg/L[25℃]）、3.章参照）よりも低い濃度で4-ビニル-1-シクロヘキサンが毒性を示さないことを証明しているため、これらの試験結果を用いて水生生物に対するリスク評価を行う。

これらの結果から、4-ビニル-1-シクロヘキサンの環境中の水生生物に対するリスク評価に用いる無影響濃度として、最小値である甲殻類のオオミジンコに対する繁殖を指標とした21日間NOEC 0.227 mg/L（環境省、2001c）を採用した（表7-2参照）。

表9-1 4-ビニル-1-シクロヘキサンの水生生物に対する無影響濃度等

<table>
<thead>
<tr>
<th>生物レベル</th>
<th>生物名称</th>
<th>エンドポイント</th>
<th>濃度 (mg/L)</th>
<th>文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>藻類</td>
<td>Selenastrum capricornutum 1) (セナストルム)</td>
<td>72時間NOEC 生長阻害 (生長速度)</td>
<td>13.9</td>
<td>環境省, 2001a</td>
</tr>
<tr>
<td>甲殻類</td>
<td>Daphnia magna (オミジンコ)</td>
<td>21日間NOEC 繁殖</td>
<td>0.227</td>
<td>環境省, 2001c</td>
</tr>
<tr>
<td>魚類</td>
<td>Oryzias latipes (オヤシ)</td>
<td>96時間LC30</td>
<td>4.60</td>
<td>環境省, 2001d</td>
</tr>
</tbody>
</table>

1) 現学名: Pseudokirchneriella subcapitata
太字はリスク評価に用いたデータを示す。

9.1.3 暴露マージンと不確実係数値の算出

4-ビニル-1-シクロヘキサンの環境中の水生生物に対するMOEを、甲殻類の繁殖を指標とし21日間NOECの0.227 mg/LとEECの0.064 g/Lを用いて、以下のように算出した。また、3
つの栄養段階からそれぞれ採用した毒性試験データに関する不確実係数積を求めた。

\[
\text{MOE} = \frac{\text{NOEC}}{\text{EEC}} = \frac{227 (\text{g/L})}{0.064 (\text{g/L})} = 3,500
\]

不確実係数: 室内試験の結果から野外での影響を推定するための不確実係数 (10)
2つの栄養段階から3つの栄養段階を推定するための不確実係数 (5)
不確実係数積: 50

9.1.4 環境中の生物に対するリスク評価結果
表 9-2 に示すように、MOE 3,500 は不確実係数積 50 より大きく、4-ピニル-1-シクロヘキセンは現時点では環境中の水生生物に悪影響を及ぼすことはないと判断する。

<table>
<thead>
<tr>
<th>モデル推定値 (PRTR 簡易評価システム)</th>
<th>NOEC (mg/L)</th>
<th>MOE</th>
<th>不確実係数積</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.064</td>
<td>0.227</td>
<td>3,500</td>
<td>50</td>
</tr>
</tbody>
</table>

1) 室内試験(10) □ 2 栄養段階の長期毒性試験 (5)

9.2 ヒト健康に対するリスク評価
4-ピニル-1-シクロヘキセンのヒトにおける定量的な健康影響データは限られているため、ヒト健康に対するリスク評価には動物試験データを用いることとする (8. 参照)。リスク評価は、実験動物に対する無毒性等 (NOAEL, LOAEL) を推定摂取量で除した値である MOE と、評価に用いた毒性試験データに関する不確実係数積を比較することにより行う。

9.2.1 リスク評価に用いるヒトの推定摂取量
4-ピニル-1-シクロヘキセンは、主に大気、飲料水及び食物 (魚類) を通じてヒトに摂取されると推定され、それぞれの経路からの 1 日推定摂取量を表 9-3 に示す (6.4 参照)。

<table>
<thead>
<tr>
<th>摂取経路</th>
<th>摂取量推定に用いた 採用濃度の種類</th>
<th>1 日推定摂取量 (g/人/日)</th>
<th>体重1 kg あたりの 1 日推定摂取量 (g/kg/日)</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸入</td>
<td>大気</td>
<td>モデル推定値 (AIST-ADMER)</td>
<td>0.66 0.013</td>
</tr>
<tr>
<td>経口</td>
<td>飲料水</td>
<td>モデル推定値 (PRTR 簡易評価システム)</td>
<td>0.13 0.0060</td>
</tr>
<tr>
<td>食物 (魚類)</td>
<td>河川水中濃度 ∙ 10 g 生物濃縮係数</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

30
9.2.2 リスク評価に用いる無毒性量

4-ビニル-1-シクロヘキセンの反復投与毒性に関しても、吸入、経口のいずれの投与経路でも主として腎臓や卵巣などに影響がみられている。

吸入経路では、マウスを用いた13週間吸入暴露試験（Bevan, et al., 1996）における嗜睡、死亡、卵巣の萎縮を指標としたNOAELは250 ppm (1,125 mg/m³) を採用した (表8-3参照)。この値は、6時間/回、65回の投与頻度で得られた値であるので、1日1回、6時間/日、5日/週と仮定し、1日推定吸入摂取量に換算すると、マウスでは330 mg/kg/日であるという。

経口経路では、ラット及びマウスを用いた2年間経口投与試験では、マウスにおける最低用量の200 mg/kg/日以上で、前胃に潰瘍、炎症、上皮過形成が、ラットで最低用量の200 mg/kg/日以上で前胃に上皮過形成がみられた（U.S.NTP, 1986）。そこで本評価書ではこれらの影響を指標としたLOAEL 200 mg/kg/日を採用した（表8-3参照）。いずれの試験結果も、5日/週の投与頻度で得られた値であるので、1日推定経口摂取量に換算すると、140 mg/kg/日とする。

遺伝毒性に関しては、遺伝毒性試験として報告された種類と数が少なく、4-ビニル-1-シクロヘキセンの遺伝毒性については明確には判断できない。

発がん性に関しては、4-ビニル-1-シクロヘキセンはマウスの経口投与で雌に卵巣の発がん及び卵巣の病変に伴う腎臓の発がんがみられたこと（U.S. NTP, 1986）から、4-ビニル-1-シクロヘキセンは発がん性を示すと判断する。IARC は、4-ビニル-1-シクロヘキセンをグループ2B とし、ヒトに対して発がん性がある可能性がある物質としている。

なお、IPCS、EU、米国EPA、カナダ環境省・保健省、オーストラリア保健・高齢者担当省、我が国環境省では4-ビニル-1-シクロヘキセンのリスク評価を実施していない。

9.2.3 暴露マージンと不確実係数の算出

4-ビニル-1-シクロヘキセンは、ヒトに対して主として吸収と経口の暴露経路からの摂取が推定される。ここでは、各々の経路の摂取量に対するMOEを算出した。また、採用した毒性試験データに関する不確実係数を求める。

a. 反復投与毒性に対する暴露マージンと不確実係数

a-1 吸入経路

マウスの13週間吸入暴露試験のNOAEL 250 ppm (換算値: 330 mg/kg/日) を用いて、以下のように算出した。

MOE = NOAEL の換算値 / ヒト体重1 kgあたりの1日推定吸入摂取量

1) NOAELの換算値 = 1,125 (mg/m³) × 0.05 (m³/日呼吸量) × 6 (時間) / 24 (時間) × 5 (日) / 7 (日)
= 330 (mg/kg/日)

2) NOAELの換算値 = 200 (mg/kg/日) × 5 (日) / 7 (日) = 140 (mg/kg/日)
不確実係数：動物とヒトの種差についての不確実係数 (10)
個人差についての不確実係数 (10)
試験期間についての不確実係数 (5)
不確実係数積: 500

a-2. 経口経路
マウス及びラットの2年間経口投与試験のLOAEL 200 mg/kg/日 (換算値: 140 mg/kg/日^3) を用いて、以下のように算出した。
MOE = LOAEL の換算値 / ヒト体重1kgあたりの1日推定経口摂取量
= 140,000 (g/kg/日) / 0.0060 (g/kg/日)
= 23,000,000
不確実係数：動物とヒトの種差についての不確実係数 (10)
個人差についての不確実係数 (10)
LOAEL を用いたことによる不確実係数 (10)
不確実係数積: 1,000

9.2.4 ヒト健康に対するリスク評価結果
表9-4 に示すように、4-ビニル-1-シクロヘキセンの吸入経路及び経口経路に対する MOE 25,000,000、23,000,000 は、いずれもヒト健康に対する評価に用いた毒性試験データに関する不確実係数値 500、1,000 より大きく、現時点ではヒト健康に悪影響を及ぼすとはないと判断する。

<table>
<thead>
<tr>
<th>摂取経路</th>
<th>体重1kgあたりの1日推定摂取量 (g/kg/日)</th>
<th>NOAEL (mg/kg/日)</th>
<th>MOE</th>
<th>不確実係数積</th>
</tr>
</thead>
<tbody>
<tr>
<td>吸入</td>
<td>0.013</td>
<td>330</td>
<td>25,000,000</td>
<td>500^7</td>
</tr>
<tr>
<td>経口</td>
<td>0.0060</td>
<td>140^7</td>
<td>23,000,000</td>
<td>1,000^7</td>
</tr>
</tbody>
</table>

1) LOAEL を用いた。
2) 種差 (10) 個人差 (10) 試験期間 (5)
3) 種差 (10) 個人差 (10) LOAEL の使用 (10)

9.3 まとめ
現時点で、4-ビニル-1-シクロヘキセンは環境中の水生生物及びヒト健康 (吸入経路、経口経路) に対し悪影響を及ぼすことはないと判断する。
なお、4-ビニル-1-シクロヘキセンの発がん性に関しては、マウスへの経口投与試験で卵巣および副腎に発がんが見られたことから、発がん性を示すと判断する。また IARC がグループ 2B に分類しており、遺伝毒性を有する発がん性物質の可能性があることから、今後も遺伝毒性及
び発がん性についての情報収集が必要である。

ACGIH, American Conference of Governmental Industrial Hygienists (2004) TLVs and BEIs.

1) データベースの検索を 2004 年 4 月に実施し、発生源情報等で新たなデータを入手した際には文献を更新した。

Mukhtar, H., Philpot, R.M. and Bend, J.B. (1978a) The postnatal development of microsomal epoxide
hydrase, cytosolic glutathion S-transferase, and mitochondrial and microsomal cytochrome P-450 in adrenals and ovaries of female rats. Drug Metab. Disp., 6, 577- (Hoyer et al., 2001 から引用)

U.S. NTP, National Toxicology Program (1986) NTP Technical report on the toxicology and carcinogenesis studies of 4-vinylcyclohexene (CAS No 100-40-3) in F344/N rats and B3C3F1 mice (gavage study). (Technical Report series No. 303), U.S. Research Triangle Park, NC.

U.S. NTP, National Toxicology Program (1989) Reproductive toxicity testing by continuous breeding test protocol in Swiss (CD-1) mice. NTIS Accession No. PB 89152425/AS0. PB 89152425.

産業技術総合研究所（2004）有機化合物のスペクトルデータベース
(http://www.aist.go.jp/RIODB/SDBS/ (2004.9)から引用)
産業技術総合研究所（2005）産総研・曝露・リスク評価大気拡散モデル（AIST-ADMER）
(http://unit.aist.go.jp/crm/admer/)
製品評価技術基盤機構（2004）化学物質のリスク評価及びリスク評価手法の開発プロジェクト/平成15年度研究報告書（新エネルギ－産業技術総合開発機構 委託事業）
製品評価技術基盤機構（2005）化学物質のリスク評価及びリスク評価手法の開発プロジェクト/平成16年度研究報告書（新エネルギ－産業技術総合開発機構 委託事業）
製品評価技術基盤機構（2006）化学物質のリスク評価及びリスク評価手法の開発プロジェクト/平成17年度研究報告書

通商産業省（1985）通商産業公報（1985年12月28日）
製品評価技術基盤機構 化学物質管理情報
(http://www.nite.go.jp から引用)
通商産業省（1992）通商産業省基礎産業局化学品安全課 監修 化学物質安全点検データ集 日本化学物質安全情報センター
(http://www.nite.go.jp から引用)
日本化学工業協会（2001）日本化学工業協会のレスポンシブル・ケアによるPRTRの実施
日本化学工業協会 (2002) PRTR 対象物質簡易評価システム　version2.0
化学物質の初期リスク評価書

No.118 4-ビニル-1-シクロヘキセン

<table>
<thead>
<tr>
<th>作成経緯</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2006年3月</td>
<td>初期リスク評価指針 Ver.2.0 に基づき原案作成</td>
</tr>
</tbody>
</table>
| 2007年3月 | 有害性評価部分：経済産業省・化学物質審議会・審査部会
第29回安全評価管理小委員会審議了承 |
| 2008年7月 | Ver.1.0 公表 |

<table>
<thead>
<tr>
<th>初期リスク評価責任者</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>プロジェクトリーダー</td>
<td>中 西 準 子</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>有害性評価外部レビュア</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>環境外の生物への影響 (7章)</td>
<td></td>
</tr>
<tr>
<td>日本大学 生物資源科学部</td>
<td>内 田 直 行</td>
</tr>
<tr>
<td>ヒト健康への影響 (8章)</td>
<td></td>
</tr>
<tr>
<td>食品農薬農薬品安全性評価センター</td>
<td>今 井 清</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>初期リスク評価実施機関 ,リスク評価担当者</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>財団法人 化学物質評価研究機構</td>
<td>清 水 康 資</td>
</tr>
<tr>
<td>野 坂 俊 樹</td>
<td>林 浩 次</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>独立行政法人 製品評価技術基盤機構</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>平 井 祐 介</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>連絡先</th>
<th></th>
</tr>
</thead>
</table>
| 財団法人 化学物質評価研究機構 安全性評価技術研究所
〒112-0004 東京都文京区後楽1-4-25 日教販ビル7F
tel. 03-5804-6136 fax. 03-5804-6149 | |
| 独立行政法人 製品評価技術基盤機構 化学物質管理センター リスク評価課
住所 〒151-0066 東京都渋谷区西原2-49-10
tel. 03-3468-4096 fax. 03-3481-1959 | |