セレンおよびセレン化合物
（水素化セレン、六フッ素化セレンを除く）
[CAS No. 7782-49-2]
許容濃度 0.1 mg/m³

許容濃度の提案理由
2000年（H. 12）年
セレンは酸素や硫黄化合物中に少量化して放出するが、自然環境では酸化と同様に、−2, +4, +6の原子価を取る。セレンは様々な生理活性を有する必須微量元素としてよく知られているが、家畜では過剰のセレン摂取による中毒（blind staggererやalkali diseaseなど）も知られている。
1. 主なセレン化合物の物理化学的性質
Selenium（Se）：赤・無色結晶粉末または灰色の光沢ある固体、原子量78.96、融点217 ℃、沸点688 ℃。
Selenium dioxide（SeO₂）：白色吸湿性固体、分子量110.96、水・エタノールに易溶、容易に還元され赤色セレンを生じる。
Sodium Selenite（Na₂SeO₃）：無色結晶、分子量172.94、水よく溶けアルカリ性を示し、空気中安定。
Sodium Selenate（Na₂SeO₄）：白色結晶、分子量188.95、水よく溶ける。
Selenium Sulfide（SeS）：橙黄色固体、分子量111.03、水・エタノールに不溶。
Selenium oxychloride（SeOCl₂）：空中で発黴性のある無色液体、分子量165.87、融点10.8 ℃、沸点177.5 ℃。

2. 用途
工業的には以下の無機セレン化合物が多く用いられている。
亜硫酸アンモニウム[(NH₄)₂SeO₃]：赤色ガラスの製造、アルカリイオン交换器。
セレン化アミヌム（Al₂Se₃）：セレン化水素の製造、半導体の研究。
セレン化ピスマス（Bi₂Se₃）：半導体研究。
セレン化カドミウム（CdSe）：光電池、発光二極管、塩光性。
セレン化カルシウム（CaSe）：電子エッジ。
セレン化イジニウム（InSe）：半導体研究。
セレン酸銅（II）（CuSeO₃）：銅または銅合金の着色、セレン化銅（III）（CuSe）：ケルダール分解の触媒。
ヘミセレン化亜鉛（As₂Se₃）：ガラスの製造。
二酸化セレン（SeO₂）：酸化剤として研磨された鋼の上に蓄積がかかる酸化皮膜を作るのに使われる。
一酸化セレン（Se）：小動物の発育、カビ炎症、カイセロン、ノミさや介在などの局所薬、通常二酸化セレンと混用。
二酸化セレン（SeO₂）：イス・ネコの黒斑、カビ炎症の治療薬、シャンプー中のフク防止薬、通常一酸化セレンと混用。
セレン酸ナトリウム（Na₂SeO₄）：ダニ、線虫駆除、動物用医薬品。
亜セレン酸ナトリウム（Na₂SeO₃）：ガラス製造における緑色の除去、動物用医薬品。

3. 代謝
a) 吸収とその後の代謝
セレンは腸管、呼吸器、皮膚から吸収されると考えられる。気中セレン濃度が高い環境での作業者の尿にセレン排泄が報告されているので、呼吸器からも吸収されると考えられる。Seleniteやselenium oxychlorideは実験動物の皮膚に吸収されることが報告されている。Seleniteやselenomethionineの動物の腸管吸収率は、それぞれ92%、91%で、特に回腸での吸収が多い。ヒトの腸管で有機（selenomethionine）および無機（sodium selenite）のセレン化合物は急速に吸収され、bioavailabilityはそれぞれ84%、97%である。200 μgのsodium selenite（74Se）を6人の男女志願者に経口投与した結果、血漿での滞在時間（mean residence time）は最大200～285時間であり、また組織（tissue pool）では115～285日であった。12日間後に、投与量の65%が、90日では約35%が残存していた。フケア取り手術中のselenium sulfideは、損傷のある皮膚に障害することによって中毒を起こすことが知られている。吸収されたセレン（例えばselenite）はglutathione（GSH）を消費し、selenoperoxidase（GSeH）からさらにhydrogen selenideまで還元される。このselenideは生体内での反応性が高いため、メチル化され、dimethylselenide[(CH₃)₂Se]をとれ、グルタチオニンバオキシシダーゼ（GSH-Px）の蛋白質で取り込まれる。また、セレン化合物を酵素へ酸化すると、酸素を電子を与えることによってsuperoxide anion radicalなどの活性酸素の発生可能性が示唆されている。
b) 分布
ヒトや動物では特に個别がない場合は、腎臓や肝臓での濃度は他の臓器より高いが、肺のセレン濃度は低いが、気管については最も高い。ヒトにおけるセレンの濃度は、尿（20～200 μg/L）7, 8）、血液（1～2 μg/L）、母乳（7～30 μg/L）1, 9) で、他の組織、毛髪、爪、糞中にも存在する。このようなセレン濃度は報告によって影響を受け、セレン過剰の地域で多発したヒトのセレン中毒では、血液や尿中セレンがそれぞれ3,200 μg/Lや2,680 μg/Lまで増加した。

4. 排泄
セレンはdimethylselenideを経てtrimethylselenoni-um[(CH₃)₃Se]イオンとなり腎中へ排泄される。しかし、大量曝露ではdimethylselenideが気中に出てくる。これが過剰摂取時のニンニクの原因であると考えられている。

5. セレンの毒性機序
セレンは一方で必須微量元素として重要で、GSH-Pxの活性部位に取り込まれ活性酸素から生体を防ぐ。他方、GSHや抗酸化物質の生体内のSH基との反応性が高く、内因性抗酸化剤であるGSHの消費や生体抗酸化剤の機能不全などがセレンの毒性の機序として考えられている。前述のようにhydrogen selenideがセレン中毒を酸化され、発生する活性酸素も毒性の機序として考
4. 生体への影響
1) 動物実験
a) 急性毒性

急性セレン中毒の特徴はニンニク臭で、dimethylselenideに起因する、犬とラットで嘔吐、呼吸困難、テナニー様の発症症状が報告されている。経口投与ではsodium seleniteとsodium selenenateが最も急性毒性が高いくnownとされている。また、selenium sulfideやelemental seleniumは可溶性が低いため毒性は低い。ラットでの経口投与によるセレン化合物のLD₅₀は、sodium seleniteが70 mg/kg、selenium sulfideが138 mg/kgであり、elemental seleniumのLD₅₀は6,700 mg/kgで、elemental seleniumに曝露される場合は実際的には無毒であると考えられている。マウスの経口投与によるsodium seleniteとselenocystineのLD₅₀の比較ではそれぞれ7,080 mg/kgと76 mg/kgで、無機セレンの方が毒性が高いことが報告された。また、selenium oxychlorideは皮膚から吸収されるかため、ウサギの皮膚に応じて最小死亡量（minimum lethal dose）は7 mg/kgである。b) 亜急性毒性

食に2.5～10 ppmの濃度（Seとして）でselenomethionine、sodium seleniteあるいはsodium selenateを混ぜ、雄ラット（Sprague-Dawley）に投与すると、用量依存的な毒性を示した。すなわち、25 ppm群の6週間の観察では、正常の成長であったが、5 ppm群ラットの体長は対照群に比べ低かった。なお、10 ppm群ラットは29日以内にすべて死亡した。無機セレン化合物と有機セレン化合物の比較では、無機セレンによる体重減少の度合いの方が、有機セレンより大きいことが示された。動物に15～30 ppmの濃度でsodium seleniteを60日間投与したモルモットでは、小球性低色素性貧血やリノベ球減少が観察された。成熟したメスのサルにL-selenomethionineを経口的に30日間投与25～60 μg Se/kg投与した実験では、体重減少・中央卵円・血性下痢・皮膚剥離を示し、最高濃度群（600 μg Se/kg）では2週以内に死亡した。また、生存動物は肝臓障害・低体温・食欲低下も観察された。投与量25 μg/kg/dayのサルでも、体重の体成分減少が見られたが実験操作のためと考えられた。しかし、この投与量でも2頭のうち1頭に皮膚炎や角化がみられ、著者らはそれをセレン投与のためと考えた。

c) 種毒性

セレンの種毒性の指標として体重減少が最もとられている。SchroederとMitchenerは、マウスにSe濃度3 ppmの飲水を540日間投与し、壊死マウスで体重減少と寿命短縮を観察した。ラットにおいてこののような毒性発現は、一日体重1kg当たり200～250 μgの投与が必要であると考えられている。

d) 発がん性

セレンやセレン化合物の発がん性については明確な結論はまだ出ていない。International Agency for Research on Cancerは、動物に関しては発がん性があるという証拠は不充分であると評価した。}

3) 遺伝毒性

Nodaら（1979）はSalmonella typhimuriumでselenateとseleniteの変異原性を報告した。様々なセレン化合物は、培養したヒトリンパ球、fibroblast。Chinese hamster ovary（CHO）cellなどでのchromosome aberrationを誘導し、mouse、hamster、macaqueの骨髄でのclastogenicityが示唆されている。また、sister-chromatid exchange（SCE）は培養したヒトリンパ球とChinese hamster V79 cellで報告された。
2) ヒトでの毒性

Clinton (1947) は疫病時間でも高濃度の selenium fume
に曝露された作業者で、、え、喉痛が強く刺激
され、また頭痛を起こすことと報告した29)。Wilson (1962)
は selenium oxide に37名が曝露された事故で、、
気管支通常や咳が出回り、直後に12時間以内に発疹、
発熱、頭痛、気管支炎が観察され、気管炎は4日間続
いたが1週には回復したと記載した30)、三浦ら
(1958) はヒト肺部作業者の実態調査を行った31)。作
業場の気中濃度は、約 0.1 mg/m³から最高で約 46
mg/m³と大きく変動していた。セレン作業者の拘束時
間内に採取した尿のセレン濃度は、10 μg/Lから320 μ
g/L (原文では10 μg/100 ccから320 μg/100 cc) にお
よび、同じ工場に勤務する研究者や事務作業員（セレン
非曝露）の尿中セレン濃度（10 μg/Lから50 μg/L :原
文では10 μg/100 ccから50 μg/100 cc）をはるかに超
えた者もいた。自覚症状としては、セレン作業者全員が
気息の不快を覚え「気息のにせを吸ったのでは、
のどが痛むが、くしゃみが出る、咳むしくなると全員
が訴えている」ことが記載されている。さらにほとんどの者
が、激しい咳痰の後の喉の赤さの着色やさらには喉の脱
落、貍子状変化・形をした状態を経験していた。症例
については、不安全検査 (Minnesota Multiphasic
Personality Inventory から抽出・邦訳・改訂した
M.K.A.L) において、異常検査点を示す者が25名中6名
いたことである (対照は14名中6名) し、しかし、この異
常を首にセレンの影響に帰することは出来ないと、著
者らは述べており、尿中セレン濃度と関連するその他の
所見もなかった。Kinnigkeit (1962) のセレン製造器を
生産する工場の作業者の対象にした調査によると、62
名中35名の作業者が肺部を訴え、他にも様々な自覚症
状が見られた32)。9名の作業者には、咳痰炎と乾燥気息
炎が観察され、他ではどのような症状が観察されな
かった。この気中セレン濃度は0.007-0.05 mg/m³で
あった。この気中濃度は、その当時のMAC 0.1 mg/m³
に比較しても低い。また、血中や尿中セレン濃度には大
きなばらつきが見られるとも報告している。論文内の
記述に技術的困難さのために分析値が決定的なもので
ないとおり、また気中セレン濃度と血中や尿中セレン濃度
との解釈は、興味深い分析値のためであろうとも記載さ
れている。Glover (1967, 1970) はセレン製造器を生産
する工場の作業者の200-300人について尿中セレンの排
泄を調査した33)、34)。セレンに曝露される grinde関連
の作業者の尿中セレンは0.25-0.43 mg/Lであったが、
セレン曝露がない作業者の端とは、0.1 mg/L以下であっ
た。Grinder関連の職場での気中セレン値は3.6
mg/m³で、その場所は0.2-0.4 mg/m³であった。一
方、気中セレン濃度を0.1 mg/m³以下に抑制すると、
尿中セレンは0.1 mg/L以下になることが確認され、尿
中セレン濃度0.1 mg/Lに相当する気中セレン濃度は0.1
mg/m³であると考えられた。Dudleyは selenium oxy-
chloride によってヒト皮膚に3度の皮膚を起こすと報告
した35)。Gloverは、selenium dioxide も同様に続けと
や皮膚炎を起こすと報告した31)。また selenium diox-
ideが爪下へ入ると腫瘍症を起こしたり、日に入り角膜
炎を起こしたり、最終的に allergy様反応も現われる。
薬理学での結果22) とは対照的に、疫学的にはセレンが
ヒトで発がんを起こす証拠がないとされている36)、37)。
ヒト人において sodium selenate を15 ppmの濃度で含
む食塩を3年間摂取した場合、肝臓の発生率は10万
人当たり419人から27.5人へ減少した38)。
5. 他の国の基準

Australia: 0.2 mg/m³ (セレンとして、hydrogen selenide 除く), 1990
Sweden: 0.1 mg/m³ (セレンとして、hydrogen selenide 除く), 1990
Unite Kindom: 0.1 mg/m³ (セレンとして、hydrogen selenide 除く), 1991
USA (ACGIH): 0.2 mg/m³ (セレンとして、hydrogen selenide 除く), 1996
6. 許容濃度の提案

セレン含有米や他の食品や薬品などに起因する成
中症は今までよく知られている。職場では、ニックガ、
金属、目と上部気道に対する刺激などの症状が観察さ
れるが、死亡は報告されていない。ニックガは代謝の
変化、つまりセレンの代謝における量的な負荷が大きく
なっていることを示すと考えられる。したがってセレン
の許容濃度は、金属、目と上部気道に対する刺激など
の症状を防ぐことにとお、ニックガが発生しないよ
う考慮すべきと考えられる。現行の許容濃度0.1 mg/m³
は、これらを防いできていると考えられる。セレンは食品か
らも摂取される。食事から摂取されるセレンの最大1日
許容量は0.4 mg (成人の平均体重を55 kgとする) とさ
れ、その時、尿中セレン濃度は約0.2 mg/Lと報告され
ている39), 40)。特に環境的な暴露のないヒトの尿中セレ
ン濃度は0.02 - 0.2 mg/Lである。そして、職場の気中
セレン濃度0.1 mg/m³は尿中セレン濃度0.1 mg/Lに相
当すると考えられる。したがって、上述の許容濃度で、
セレンがすべて吸収されるとする、通常の食餌性セレ
ン摂取量が多い場合には、最大1日許容量である0.4
mg (尿中セレン濃度が0.2 mg/L) を超える。しかし、
この許容量は毎日の生活における長期間にわたる量とし
て考えられており、十分な安全性を満たすもので、
上述の許容濃度で、全身中毒を起こす可能性は低いと考
えられる。

文 献
5) Seko Y, Imura N. Active oxygen generation as a possi-