項目名	データ入力欄
(同一の試験項目について複数の試験があ	黄色=必須項目
る場合、当該項目行をコピー追加してください。)	青=任意項目
	紫=一部の物質で必須項目

1. 一般情報

1.01 物質情報

CAS番号	123-51-3
物質名(日本語名)	3-メチルブタン-1-オール
物質名(英名)	3-methylbutan-1-ol
別名等	イソペンチルアルコール
国内適用法令の番号	化審法 2-217
国内適用法令物質名	アルカノール(C=5~38)
OECD/HPV名称	3-methylbutan-1-ol
分子式	C5H12O
構造式	Н ₃ С СН—СН ₂ —СН ₂ —ОН Н ₃ С
備考	該当せず

1.02 安全性情報収集計画書/報告書作成者に関する情報

機関名	株式会社クラレ
報告書作成日	2008/9/18
備考	該当せず

1.03 カテゴリ―評価

1.1 一般的な物質情報

物質のタイプ	有機化合物
	無色透明の液体、特有の不快臭
物理的状態(20℃、1013hPa)	液体
純度(重量/重量%)	99%以上
出典	社内データ
備考	該当せず

1.2 不純物

CAS番号	水以外の不純物の化学構造等は不明
物質名称(IUPAC)	水以外の不純物の化学構造等は不明
国内適用法令の番号	水以外の不純物の化学構造等は不明
適用法令における名称	水以外の不純物の化学構造等は不明
含有率(%)	1%未満
出典	社内データ
備考	水: 0.3%以下

1.3 添加物

CAS番号	添加物はなし
物質名称(IUPAC)	添加物はなし
国内適用法令の番号	添加物はなし
適用法令における名称	添加物はなし
含有率(%)	0%(添加物はなし)
出典	社内データ
備考	該当せず

1.4 別名

物質名-1	IAA
物質名-2	イソアミルアルコール
出典	社内データ(コード名, 商品名)
備考	該当せず

1.5 製造·輸入量

1.0 表足 刊八里	
製造·輸入量	日本における総製造量 (トン): 2003年 2004年 2005年
	約240 約240 約240
	日本への輸入量(天然産物品) 2006年 約1,600トン(輸入通関統計)
報告年	2007
	14705/14906/15107の化学商品(化学工業日報社) 輸入通関統計
備考	該当せず

1.6 用途情報

1.0 /II @ IH TK	
主な用途情報	拡散的用途
工業的用途	化学工業:合成
用途分類	48溶剤-271溶媒 0その他-93化学原材料 26食物/飼料添加物-145食物添加物 0その他-79風味と香気
出典	社内データ
備考	該当せず

1.7 環境および人への暴露情報

1./ 現現のよい人への茶路情報	
暴露に関する情報	フーゼル油から分離・精製される天然産物品と化学合成品がある。
	〈製造〉 製造は閉鎖系で行われている。製造現場でのサンプリング・分析・フィルター洗浄・ドラム充填作業などで職業曝露の可能性がある。製造現場は曝露を避けるため換気設備により換気され、作業者はゴーグル・保護手袋・マスクを着用している。
	〈ユーザー〉 化学合成品の主要用途は合成原料である。ドラムや缶から反応器や 貯蔵槽への移送作業時に、蒸気の吸入・皮膚への曝露の可能性がある。曝露防止 のため、作業現場は換気設備や局所排気装置により換気され、作業者はゴーグル・ 保護手袋・マスク・保護服等を着用している。また、屋内作・手洗い・洗眼設備を設 け、その位置を明瞭に表示している。
	<消費者> 化学合成品の消費者用途は知られていない。天然産物品については香料(食品添加物)という消費者用途が知られているが、本用途における消費者曝露は微量と考えられ、且つ食品添加物としての安全性評価が実施されている。
出典	社内データ、厚生労働省審議会資料
備考	該当せず

1.8 追加情報

既存分類	国連危険物分類(UN Hazard Class): 国連容器等級(UN Packing Group): GHS関係省庁連絡会議によるGHS分 	III(低危険性物質)
	引火性液体 急性毒性(経口)	プ短和米 区分3 区分5 区分5
	思に母は(軽及) 眼に対する損傷性/刺激性 標的臓器/全身毒性(単回曝露)	△万5 区分2A(重篤な眼の刺激) 区分1(中枢神経系) 区分3(麻酔・気道刺激)
職業暴露限界	ACGIH-作業環境許容濃度: 100pp	om(TWA), 125ppm(STEL)
廃棄方法		R棄する際には産業廃棄物として焼却処理す

	CRC Handbook of Chemistry and Physics, Patty's Industrial Hygiene and Toxicology, DIALOG-ToxFile, DOSE, RTECS, ICSC, IRIS, IARC, NTP, NITE-CHRIP, 厚生労働省-GINC(JECDB): 2007年2月~7月.
出典	ICSC, NITE-GHS関係省庁連絡会議による分類結果,社内データ
備考	該当せず

2. 物理化学的性状

2.1 融点

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈	該当せず
方法	不明
GLP	不明
試験を行った年	不明
試験条件	不明
結果	
融点: ℃	−117.2°C
分解: °C	いいえ
昇華: ℃	いいえ
結論	融点:-117.2℃
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
引用文献	該当せず
備考	該当せず

2.2 沸点

3-メチルブタン-1-オール
123-51-3
不明
該当せず
不明
不明
不明
不明
131.1°C
1013 hPa
いいえ
沸点:131.1℃
該当せず
2 制限付きで信頼性あり
キースタディ
ピアレビューされたハンドブックからのデータ
Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
該当せず
該当せず

2.3 密度(比重)

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈 方法	該当せず
方法	不明
GLP	不明
試験を行った年	不明
試験条件	不明
結果	0.8104 g/cm3
タイプ	密度

温度(℃)	20°C
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	選択してください
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
引用文献	該当せず
備考	該当せず

2.4 蒸気圧

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈	該当せず
方法	不明
GLP	不明
試験を行った年	不明
試験条件	不明
結果	
蒸気圧	各蒸気圧を示す温度:
	蒸気圧(kPa) 1 10 100 温度(°C) 39.1 75.7 130.1
	上記のデータより25℃における蒸気圧を下式によって計算した。 LogP=-2762.2*(1/T)+11.873 P:測定値(Pa)、T:温度(K) 25℃における蒸気圧=406Pa
温度: ℃	25°C
分解: °C	いいえ
結論	蒸気圧:406Pa (25℃)
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
引用文献	該当せず
備考	該当せず

2.5 分配係数(log Kow)

2.0 /J HI IN 3X (108 11011)	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈	該当せず
方法	不明
GLP	不明
試験を行った年	不明
試験条件	不明
結果	
Log Kow	1.28
温度: ℃	25°C
結論	log Kow: 1.28
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
引用文献	該当せず
備考	該当せず

2.6.1 水溶解性(解離定数を含む)

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈	該当せず
方法	不明
方法 GLP	不明
試験を行った年	不明
試験条件	不明
結果	
水溶解度	28 g/L
温度: °C	25°C
pH	不明
pH測定時の物質濃度	該当せず
結論	28 g/L (25°C)
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Lide, D.R., CRC Handbook of Chemistry and Physics 86th Edition
引用文献	該当せず
備考	該当せず
UH '73	
解離定数	
試験物質	3-メチルブタン-1-オール
<u>武歌物員</u> 同一性	該当せず
<u>同 </u>	該当せず
カム 温度: ℃	該当せず
GLP ₹#₽₽	該当せず
試験条件	該当せず
試験を行った年	該当せず
結果	該当せず
結論	解離性はないと結論可能(本物質の化学構造中には解離性の原子団は存在しない
N- #0	ため)
注釈	該当せず
信頼性スコア	該当せず
	該当せず
信頼性の判断根拠	該当せず
出典	化学構造から判断
引用文献	該当せず
備考	該当せず

2.6.2 表面張力

2.7 引火点(液体)

3-メチルブタン-1-オール
123-51-3
不明
該当せず
closed cup/open cup
不明
不明
不明
closed cup: 45°C; open cup: 55°C
その他:下欄のセルに記載
クローズドカップ、オープンカップの両方のデータがあった
引火点:45℃(クローズドカップ);55℃(オープンカップ)
該当せず
2 制限付きで信頼性あり
キースタディ
ピアレビューされたハンドブックからのデータ
Merck Index 12th ed. 1996, 5212.
該当せず
該当せず

- 2.8 自己燃焼性 (固体/気体)
- 2.9 引火性
- 2.10 爆発性
- 2.11 酸化性
- 2.12 酸化還元ポテンシャル
- 2.13 その他の物理化学的性状に関する情報
- 3. 環境運命と経路
- 3.1 安定性
- 3.1.1. 光分解

0.1.1. /U/J /J+	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	該当せず
注釈	該当せず
方法	AOPWIN (version 1.91)
タイプ	間接光分解
GLP	該当せず
試験を行った年	2006
光源と波長(nm)	該当せず
太陽光強度に基づいた相対強度	該当せず
物質のスペクトル	該当せず
試験条件	光照射時間:12時間/日
結果	
物質濃度	該当せず
温度(℃)	該当せず
直接光分解	
半減期t1/2	該当せず
分解度(%)と時間	該当せず
量子収率(%)	該当せず
間接光分解	
増感剤(タイプ)	OHラジカル
増感剤濃度	1.5 × 10 ⁶ OH/cm3
速度定数	8.2947×10^(-12) cm3/molecule-秒
半減期t1/2	t1/2=1.289日
分解生成物	該当せず
結論	t1/2=1.289日
注釈	該当せず
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	一般に認められている計算方法
出典	国による情報提供
引用文献	該当せず
備考	該当せず

3.1.2. 水中安定性(加水分解性)

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	該当せず
注釈	該当せず
方法	該当せず
GLP	該当せず
試験を行った年	該当せず
試験条件	該当せず
結果	
設定濃度	該当せず
実測濃度	該当せず

所定時間後の分解度(%)、pH、温度	該当せず
半減期	該当せず
分解生成物	該当せず
結論	加水分解性はないと結論可能(本物質の化学構造中には加水分解性の原子団は
	存在しないため)
注釈	該当せず
信頼性スコア	該当せず
	該当せず
信頼性の判断根拠	該当せず
出典	化学構造から判断
引用文献	該当せず
備考	該当せず

3.1.3. 土壌中安定性

3.2. モニタリングデータ(環境)

3.3. 移動と分配

3.3.1 環境区分間の移動

3.3.1 環境区分间の移動					
試験物質名	3-メチルフ		オール		
CAS番号	123-51-3				
純度等	該当せず				
注釈 方法	該当せず				
方法	Fugacity	model	Ш		
結果					
媒体	大気一水	<u> - 土壌 -</u>	-底質		
環境分布予測と媒体中濃度 (levelII/III)	分布 (%)				
	大気	水	土壌	底質	
	2.52	42.3	55.1	0.0879	
	分布 (%)				
4-H HIII					
	大気	水	土壌	底質 	
	2.52	42.3	55.1 	0.0879	
	EPISUITE	(version	3.12)		
信頼性スコア	2 制限付	きで信頼			
	キースタラ	гт			
信頼性の判断根拠	一般的に	認められ	ている計算	方法	
出典	国による	青報提供			
引用文献	該当せず				
備考	該当せず				

3.3.2 分配

試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	該当せず
注釈	該当せず
媒体	水-空気
方法	ヘンリー定数
試験条件	該当せず
結果 結論	1.35 Pa × m3/mole
結論	1.35 Pa × m3/mole
注釈	HENRYWIN v1.90, 2006年, 25℃
信頼性スコア	2 制限付きで信頼性あり
	キースタディ
信頼性の判断根拠	一般的に認められている計算方法

出典	国による情報提供
引用文献	該当せず
備考	該当せず

3.4 好気性生分解性

3.4 好気性生分解性	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	別名(略称):IAA
	純度:99.8%
	製造者名:株式会社クラレ
	Lot No.: 82934
注釈	不純物: 水 0.05%, その他不明不純物(合計) 0.15%
7247	被験物質は純度100%として取り扱った。
方法	OECDテストガイドライン301C "易分解性:修正MITI試験(1)"(1992年)
<u>ガム</u> 培養期間	28日間
植種源	活性汚泥
但在 GLP	はい
GLP 試験を行った年	2008
試験条件	試験容器に基礎培養基(297mLから活性汚泥添加液量[2.39mL]を差し引いた量)を
	入れ、被験物質濃度が100mg/Lになる様に10.0g/Lの被験物質水溶液を3mL添加していた。別点は、これで、100mg/Lになる様に10.0g/Lの被験物質水溶液を3mL添加していた。100mg/Lになる様に
	てpHを測定した。調製した活性汚泥を懸濁物質濃度として30mg/Lになる様に
	2.39mLを接種した。
試験物質濃度	100mg/L
汚泥濃度	30mg/L
培養温度 ℃	25±1°C
対照物質および濃度(mg/L)	アニリン 100mg/L
分解度測定方法	被験物質と対照物質の生分解度はBODメーターにより連続的に測定した。試験終
	了時に、被験物質の残存量をTOC及びGC分析により決定した。
分解度算出方法	算術平均
結果	
最終分解度(%) 日目	(%)(日目)
分解速度−1	60, 59, 59% (7日目)
分解速度-2	88, 86, 85% (14日目)
分解速度-3	94, 91, 90% (21日目)
分解速度−4	95, 92, 92 [平均93] % (28日目)
分解生成物	検出されなかった。
上記結果以外の分解度測定方法	28日目の分解度
及びその結果	TOC測定: 96, 97, 96 [平均96] %
	GC測定 : 100, 100, 100 [平均100] %
対象物質の7,14日目の分解度	64%(7日目)、76%(14日目)
その他	(汚泥+被験物質)の系のおいて
	試験終了時のpH: 7.0, 6.7
結論	本試験条件下において被験物質は微生物により分解された。
注釈	試験成績の信頼性に影響を及ぼしたと思われる環境要因はなかった。
<u>注析</u> 信頼性スコア	
등표사 소개MC+B+m	マースタディ
信頼性の判断根拠	OECDテストガイドラインに従ってGLPで実施されている。
出典	社内データ(社外試験受託機関への委託試験データ)
	試験実施機関名: 財団法人化学物質評価研究機構 久留米事業所
引用文献 備考	<mark>文献6</mark> 該当せず

3.5. BOD-5、CODまたはBOD-5/COD比

3.6 生物濃縮性

項目名	データ入力欄
(同一の試験項目について複数の試験があ	黄色=必須項目
る場合、当該項目行をコピー追加してくださ	
(\forall_o)	紫=一部の物質で必須項目

4-1 角への急性毒性

4-1 魚への急性毒性	
試験物質	3-メチルブタン-1-オール
同一性	CAS番号: 123-51-3 別名(略称): IAA 純度: 99.8% 不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15% 製造者: 株式会社クラレ Lot No.: 82934
方法	OECDテストガイドライン203 "魚類急性毒性試験"(1992年)
GLP	はい
試験を行った年	2008
魚種、系統、供給者	魚種:ヒメダカ(Oryzias latipes) 系統: 一 供給者: 試験実施機関(化学物質評価研究機構久留米事業所)にて繁殖飼育
エンドポイント	96h-LC50
試験物質の分析の有無	あり
試験物質の分析方法	曝露開始時及び24時間後(換水前)、72時間後(換水後)及び96時間後(曝露終了時)に試験液中の被験物質濃度の測定を行った。調製時の測定用試験液は調製容器より別途分取したものを用いた。その24時間後の測定用試験液は、各試験区の試験容器の中層からそれぞれ均等量採取し、混合したものを用いた。被験物質濃度の分析はGCにより行った。
	分析方法概要: 採取した試験液をそのままGC試料とした。 検出下限=未記載, 定量下限=10mg/L
結果の統計解析手法	曝露開始24,48,72,及び96時間後の各試験区におけるヒメダカの累積死亡率(%)を求めた。本試験は100mg/L区と対照区のみの限度試験で行い、且つ試験濃度で死亡が認められたかったため、LC50の算出にあたって統計学的な手法は用いなかった。
試験条件	
試験魚の月齢、体長、体重	月齢: 5ヶ月 体長: 2.3±0.13cm 体重: 0.14±0.021g (平均±標準偏差; n=8)
試験用水量あたりの魚体重	0.187g/L (=0.14g×8匹/6L)
参照物質での感受性試験結果	硫酸銅(Ⅱ) 五水和物による96時間LC50=0.54mg/L 本値は試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.13~0.98mg/L)であった[平均±標準偏差:0.55±0.21mg/L(n=40)]。
じゅん化条件	じゅん化期間: 21日間 飼育水: 試験条件と同じ水質(脱塩素水道水) じゅん化前の薬浴: 未実施 飼育環境: 流水条件,水温=24±1°C,溶存酸素濃度=飽和濃度の80%以上,16 時間明/8時間暗 飼料: コイ用配合餌料2Cを給餌(曝露開始24時間前より無給餌)
希釈水源	十分なエアレーションにより脱塩素した上水道水(福岡県久留米市宮ノ陣; 試験機関=化学物質評価研究機構久留米事業所)
希釈水の化学的性質	硬度: 44mg/L(CaCO3として) アルカリ度: 38mg/L(CaCO3として) pH: 7.9(24°C) 全有機体炭素: 0.3mg/L 浮遊物質: 1mg/L未満 電気伝導率: 18.5mS/m
試験溶液(及び保存溶液)とその調 製法	設定濃度になる様に調製容器にて被験物質と試験用水を混合し、ヘッドスペースが 無い密閉状態でマグネティックスターラーにより攪拌し溶解したものを試験液とした。 この試験液を試験容器に入れ、被験物質の蒸散を防止するために直ちにガラス製 の蓋により気相が無い様に密閉した。

試験物質の溶液中での安定性	予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。本試験: 測定した試験液中の被験物質濃度は、曝露開始時・24時間後換水前・72時間後換水後・96時間曝露終了時の4時点で設定値の98~100%の値を示し、密閉系で試験を行ったことにより、被験物質は試験液中に安定に存在したと判定された。
溶解助剤/溶剤の種類とその濃度	使用せず
暴露容器	試験溶液量: 3L/容器容器の大きさと材質: 蓋付きの3L容のガラス製容器(直径16cm×深さ17cm)容器の密閉: ほこりの混入と試験液の蒸発と被験物質の蒸散を防ぐためガラス製の蓋をし、密閉した。 通気の有無: 無
暴露期間	96時間
試験方式	半止水
換水率/換水頻度	24時間に1回の頻度で試験液の全量を交換
す**・ 4 す ツナ リの 各 **・	連数: 2容器/試験区
連数、1連当たりの魚数	魚数: 8匹/試験区 (4匹/容器)
	対照区及び試験区における試験期間中の水質の変化:
影響が観察された少なくとも1濃度	設定濃度 DO pH
区及び対照区における水質	→ 対照区 7.7~8.5mg/L 7.4~7.9
	100mg/L 7.5~8.5mg/L 7.5~7.9
試験温度範囲	23.4~24.0°C
照明の状態	室内灯による16時間明/8時間暗
平均測定濃度の計算方法	幾何平均
結果	
設定濃度	限度試験: 0(対照区), 100(試験区)mg/L
	試験液中の被験物質濃度の経時的変化: 設定濃度=100mg/L
	 測定時点 実測濃度 (設定値に対する%)
実測濃度	曝露開始時 99mg/L (99%) ↓ 24時間後換水前 98mg/L (98%)
	72時間後換水後 100mg/L (100%)
	↓ 96時間曝露終了時 98mg/L (98%)
	平均測定濃度 99mg/L (99%)
生物学的影響観察	対照群及び試験群とも試験期間中死亡は認められなかった。また、対照群及び試験群とも異常症状は認められなかった。
	累積死亡の個体数 (死亡率%):
累積死亡率の表	設定濃度(mg/L) 3時間 24時間 48時間 72時間 96時間
	100 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
	限度試験のため95%信頼限界値と回帰直線の傾き等の統計的処理は実施しなかっ
統計的結果	た。
	該当せず
上 注釈 対照区における死亡率	該当せず 0%
注釈 対照区における死亡率 異常反応	該当せず 0% 対照区も試験区も異常反応は認められなかった。
上 注釈 対照区における死亡率	該当せず 0%
注釈 対照区における死亡率 異常反応	該当せず 0% 対照区も試験区も異常反応は認められなかった。

結果(96h-LC50)	96h-LC50 > 100mg/L (設定濃度に基づく)
信頼性スコア	1. 制限なく信頼性あり
キースタディ	キースタディ
信頼性の判断根拠	OECDテストガイドラインに従ってGLPで実施されており、試験成績の信頼性に影響を及ぼす要因や試験計画からの逸脱事項の発生は無かった。
出典	社内データ(社外試験受託機関への委託試験データ) 試験実施機関名: 財団法人化学物質評価研究機構 久留米事業所
引用文献	文献7
備考	該当せず

4-2 水生無脊椎動物への急性毒性(例えばミジンコ)

4-2 水生無脊椎動物への急性毒性	
試験物質	3-メチルブタン-1-オール
同一性	CAS番号: 123-51-3 別名(略称): IAA 純度: 99.8% 不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15% 製造者: 株式会社クラレ Lot No.: 82934
方法	OECDテストガイドライン202 "ミジンコ急性遊泳阻害試験"(2004年)
GLP	はい
試験を行った年	2008
生物種、系統、供給者	生物種: オオミジンコ(Daphnia magna) 起源: 英国Sheffield大学より分譲されたDaphnia magna (clone A)の子孫 供給者: 試験実施機関(化学物質評価研究機構久留米事業所)にて継代飼育
エンドポイント	遊泳阻害(48h-EC50)
試験物質の分析の有無	あり
試験物質の分析方法	被験物質濃度測定は、曝露開始時及び終了時に行った。曝露開始時の測定用試験液は調製容器より別途分取したものを用いた。曝露終了時の測定用試験液は試験区の各試験容器の中層からそれぞれ均等量採取し、混合したものを用いた。被験物質濃度の分析はGCにより行った。 分析方法概要: 採取した試験液をそのままGC試料とした, 検出下限=未記載,
	定量下限=10mg/L
結果の統計解析手法	100mg/L区のみの限度試験のため、統計解析手法は用いなかった。
試験条件	
試験生物の起源、前処理、繁殖方 法	幼体を産出する成体は、試験条件と同じ水質(脱塩素水道水)・水温(20±1°C)・明暗周期(16時間明/8時間暗)下で14日以上飼育したもの(27日齢)で成体の生存率が100%の群(ロット)を使用した。継代飼育中はミジンコ1頭当たりChlorella vulgarisを0.1~0.2mgC(有機炭素量)/日の割合で1日1回給餌した。
参照物質での感受性試験結果	試験の再現性を確認する目的で実施(2007年12月11日~12月13日)した二クロム酸カリウムの急性遊泳阻害試験の48時間EC50は0.28mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.13~0.35mg/L)であった[平均±標準偏差:0.24±0.057mg/L(n=61)]。
試験開始時の時間齢	生後24時間齡以內
希釈水源	十分にエアレーションし、温度調節した脱塩素水道水を用いた。
布积水が 希釈水の化学的性質	硬度: 44mg/L(CaCO3として) では: 38mg/L(CaCO3として) pH: 7.9(24°C) 全有機体炭素: 0.3mg/L 浮遊物質: 1mg/L未満 電気伝導率: 18.5mS/m
試験溶液(及び保存溶液)とその調 製法	必要量の被験物質と試験用水を調製容器内で混合・攪拌・溶解することで試験溶液 を調製した。その後、調製した試験溶液を各試験容器に分割し、被験物質の蒸散を 防ぐために直ちにガラス製の蓋により気相が無いように密閉した。
試験物質の溶液中での安定性	予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時・曝露終了時の2時点で何れも設定値の97%の値を示し、密閉系で試験を行ったことにより、被験物質は試験液中に安定に存在したと判定された。

溶解助剤/溶剤の種類とその濃度	使用せず
暴露容器	腰高シャーレ(内径8.0cm, 深さ5.0cm)を曝露容器として用いた。また、ほこりの混入
暴露期間	や試験液の揮発と被験物質の蒸散を防ぐためにガラス製の蓋をし、密閉した。 48時間
試験方式	上水
	連数: 4試験容器/試験区
連数、1連当たりの試験生物数	試験生物数: 5頭/試験容器 (20頭/試験区)
も1濃度区における水質	対照区及び試験区における試験期間中(曝露開始時→曝露終了時)の水質の変化:
試験温度範囲	水温: 20.0℃
照明の状態	室内灯による16時間明/8時間暗
平均測定濃度の計算方法	幾何平均
結果	0(井曜区) 100/
設定濃度	0(対照区), 100mg/L 予備試験結果より、暴露濃度を100mg/Lとする限度試験を実施した。
実測濃度	試験液中の被験物質濃度の経時的変化:
	対照区 nd nd - 100 97 (97) 97 (97) 97 (97) nd: 定量下限(10 mg/L)未満
	ミジンコの遊泳阻害数:
遊泳阻害数	
	対照区 0 (0) 0 (0) 100 0 (0) 0 (0)
	対照区・試験区の何れにおいても異常な症状や異常な行動は観察されなかった。
累積遊泳阻害数の表	該当せず(対照区・試験区の何れにおいても遊泳阻害は認められなかった)
注釈	該当せず
対照区における反応は妥当か	はい
察	曝露期間中において、対照区でミジンコの遊泳阻害率及び異常症状(脱色や水面に 浮く等)の発生率は何れも0%であり、試験の有効性基準を満たした。
結論 結	405 5050 ~ 100/」(弥字連座に甘ざハ
結果(48h-EC50) 信頼性スコア	48h-EC50 > 100mg/L (設定濃度に基づく) 1. 制限なく信頼性あり
<u> </u>	1. 制限ない信頼性の9
信頼性の判断根拠	OECDテストガイドラインに従ってGLPで実施されており、試験成績の信頼性に影響を及ぼす要因や試験計画からの逸脱事項の発生は無かった。
出典	社内データ(社外試験受託機関への委託試験データ) 試験実施機関名: 財団法人化学物質評価研究機構 久留米事業所
引用文献	文献8
備考	該当せず
·	

4-3 水生植物への毒性(例えば藻類)

4-3 水生植物への毒性(例えば澡乳	
試験物質	3-メチルブタン-1-オール
	CAS番号: 123-51-3
	別名(略称): IAA
□ _ //±	純度: 99.8%
同一性	不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15%
	製造者:株式会社クラレ
	Lot No.: 82934
方法	OECDテストガイドライン201 "藻類生長阻害試験"(2006年)
GLP	はい
試験を行った年	2008
H-1-3X C 1 - 1 - 1	生物種: ムレミカヅキモ (Pseudokirchneriella subcapitata; ATCC22662)
生物種、系統、供給者	供給源: American Type Culture Collectionより1995年6月30日に購入し、試験実施
	機関にて継代培養しているものを用いた。
エンドポイント	生長阻害72h-EC50 (生長速度法)
毒性値算出に用いたデータの種類	生長曲線から求めた生長速度
試験物質の分析の有無	あり
政権が対象の分別の方法	
	被験物質濃度測定は、曝露開始時及び終了時に行った。曝露開始時の測定用試験
	液は調製容器より別途分取したものを用いた。曝露終了時の測定用試験液は試験
- h = A L = C - A L = L A	区の各試験容器からそれぞれ均等量採取し、混合後、遠心分離により藻体を除去し
試験物質の分析方法	たものを用いた。被験物質濃度の分析はGCにより行った。
1	分析方法概要: 採取した試験液について、そのまま若しくは培地で適宜希釈して
	GC試料とした。 検出下限=未記載、 定量下限=1.0mg/L
	連兵 四字表の第六 女連兵区のAIは四年の60000 東京のデータルによった。
1	濃度一阻害率の算定: 各濃度区の24時間毎の細胞濃度のデータから生長曲線を
	作成し、この曲線を用い生長速度を比較することで試験区の阻害率を算出した。
	EC50の算出: 本試験濃度範囲で50%異常の阻害率が得られなかったため、統計
結果の統計解析手法	学的手法は用いなかった。
	NOECの評価: 生長速度についてBartlett法による等分散検定を行った後、各濃度
	区と対照区との有意差の有無を一元配置分散分析及びDunnettの多重比較法によ
	り求めた。有意差検定結果及び細胞観察結果よりNOECを評価した。
	The second secon
試験条件	
試験条件 試験条件	
試験条件 <u>試験施設での藻類継代培養方法</u>	未記載
	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状
試験施設での藻類継代培養方法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。
試験施設での藻類継代培養方法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)したニクロム酸カ
<u>試験施設での藻類継代培養方法</u> 藻類の前培養の方法及び状況	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバッ
試験施設での藻類継代培養方法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平
<u>試験施設での藻類継代培養方法</u> 藻類の前培養の方法及び状況	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバッ
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)したニクロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)したニクロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調 製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調 製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調 製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたた
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調 製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調 製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたた
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるパックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法 試験物質の溶液中での安定性	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.99±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。 使用せず
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法 試験物質の溶液中での安定性 溶解助剤/溶剤の種類とその濃度 暴露容器	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均生標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。 使用せず 滅菌した500mL容ガラス製三角フラスコ(密閉容器)
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法 試験物質の溶液中での安定性 溶解助剤/溶剤の種類とその濃度 暴露容器 暴露期間	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。 使用せず 滅菌した500mL容ガラス製三角フラスコ(密閉容器) 72時間
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法 試験物質の溶液中での安定性 溶解助剤/溶剤の種類とその濃度 暴露容器 暴露期間 試験方式	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用 必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。 使用せず 滅菌した500mL容ガラス製三角フラスコ(密閉容器) 72時間 止水
試験施設での藻類継代培養方法 藻類の前培養の方法及び状況 参照物質での感受性試験結果 希釈水源 培地の化学的性質 試験溶液(及び保存溶液)とその調製法 試験物質の溶液中での安定性 溶解助剤/溶剤の種類とその濃度 暴露容器 暴露期間	未記載 保存培養液から培地に植えつぎ、試験と同じ条件で3日間培養し、対数増殖期の状態の前培養液を試験に使用した。 試験の再現性を確認する目的で実施(2007年9月18日~9月21日)した二クロム酸カリウムのErC50(0-3d)は0.73mg/Lであった。この値は、試験実施機関におけるバックグラウンドデータの規定範囲内(平均±2×標準偏差:0.73~1.1mg/L)であった[平均±標準偏差:0.92±0.095mg/L(n=5)]。 精製水 OECDテストガイドライン201(2006年)に記載されている調製培地を使用必要量の被験物質を秤量し、培地に溶解させて100mg/Lの試験原液を調製した。調製容器にて必要量の試験原液と培地を混合、攪拌して試験液を調製し、各試験容器に分割した。 予備試験: 試験用水に被験物質を溶解し、100mg/Lの設定濃度とし、開放系及び密閉系で室温にて48時間静置したところ、開放では調製時濃度の53%まで濃度低下が認められたが、密閉系では調製時濃度の99%の濃度を維持していた。本結果より、本試験は密閉系で実施することが決断された。 本試験: 試験液中の被験物質濃度は、曝露開始時では設定濃度に対して89~94%、曝露終了時では85~94%であり、設定濃度の±20%以内に保たれていたため、密閉系で試験を行ったことにより被験物質は試験液中に安定に存在したと判定された。 使用せず 滅菌した500mL容ガラス製三角フラスコ(密閉容器) 72時間

	試験培養液	友のpH:					
	 設定濃度 mg/L	培養開	 開始時のpl	H 培養	 終了時のp	oH	
各濃度区の少なくとも1連における 試験開始時と終了時の水質	0 (対照区) 9.5 17 31 56 100	8.0 8.0 8.1 7.5	0 0 0 9	10 9.8 9.9 10 10	3 9).2).2		
							であったため試験培養液における限界性と判断さ
試験温度範囲	培養装置内					- D (+++0)	+ + - 24 M IF + IF 1 - 0 =
照明の状態	400~700n 100 μ E/m2 明とした。	mのスペ 2/sの光	(クトル幅(強度(試験	蛍光灯メ· 検実施機関	ーカーの商	商品情報) 量計を用し	をもつ蛍光灯を用い95~ いた実測値)での連続照
平均測定濃度の計算方法 結果	幾何平均						
設定濃度	100, 56, 3	1, 17, 9.	5mg/L(公	比1.8)の	5濃度区	及び 対照	養区(0mg/L)
実測濃度	試験液中の 	実測》 曝露開 nd 8.4 15 (農度 mg/]始時 →	L (設定 曝露終了 nd 8.1 (85) 16 (92)	 値に対する 了時 	 3%) 平均 mg/ - 8.3 (8 16 (9 29 (9	37) 1)
	56 100 nd: 定量 ⁻	51 (94 ((91) (94) 	52 (93) 94 (94)		52 (9) 94 (9)	2)
	曝露期間中	中の細胞	濃度:				
	設定濃度 (mg/L)	系列	······· 細		< 10 ⁴ cells	s/mL)	
			0時間	24時間 	48時間	72時間 	
細胞密度(1)	0 (対照区)	1 2 3 4 5 6 平均 SD	0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50	2.6 2.9 2.8 2.5 2.9 3.0 2.8 0.19	16 14 16 12 13 15 14	49 41 46 41 42 44 44 3.2	
	9.5	1 2 3 平均 SD	0.50 0.50 0.50 0.50 0	2.6 2.6 2.6 2.6 0.0061	13 17 15 15 2.3	42 43 43 43 0.90	
	17	1 2 3 平均 SD	0.50 0.50 0.50 0.50 0	2.9 3.0 2.5 2.8 0.26	14 17 16 15	44 39 43 42 2.8	
		平均	0.50	2.8	15	42	

9.5 1 1.5 1.1 2 1.5 0.50 3 1.5 0.12 平均 1.5 0.56 SD 0.0071 0.47 		曝露期間中の細胞濃度:						
日本学院 1			Z 51	細胞数 (×10 ⁴ cells/mL)				
を記している		(IIIg/ L)	נילאל	0時間	24時間	48時間	72時間	
和密度(2) 2.3 14 37 平均 0.50 2.2 13 40 SD 0 0.18 0.55 3.1		31						
胞密度(2) 平均 0.50 2.2 13 40 SD 0 0.18 0.55 3.1 SD 0 0.50 2.6 15 44 SD 0.50 2.6 15 43 SD 0 0.0051 0.69 2.7 SD 0 0.0051 0.69 2.7 SD 0 0.26 1.8 2.5 SD								
胞密度(2)								
So								
3	泡密度(2)	56						
平均 0.50 2.6 15 43 SD 0 0.051 0.69 2.7 100 1 0.50 1.9 10 32 2 0.50 2.3 12 36 3 0.50 2.4 14 37 平均 0.50 2.2 12 35 SD 0 0.26 1.8 2.5								
SD 0 0.051 0.69 2.7								
日 1 0.50 1.9 10 32 2 0.50 2.3 12 36 3 0.50 2.4 14 37 平均 0.50 2.2 12 35 SD 0 0.26 1.8 2.5 SD 0.24 SD 0.25 SD 0.0071 0.47 SD 0.19 SD 0.28 SD 0.19 SD 0.19 SD 0.19 SD 0.28 SD 0.19 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.19 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.19 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.28 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.28 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.28 SD 0.19 SD 0.19 SD 0.28 SD 0.28 SD 0.28 SD 0.28 SD 0.29 SD								
2 0.50 2.3 12 36 3 0.50 2.4 14 37 平均 0.50 2.2 12 35 SD 0 0.26 1.8 2.5 SD 0.0071 (%) (対照区) 1 1.5 - 2 1.5 - 3 1.5 - 4 1.5 - 5 5 1.5 - 6 1.5 - 7 1.5 5 1.5 - 7 1.5 5 1.5 - 7 1.5 5 1.5 - 7 1.5 5 1.5								
3 0.50 2.4 14 37		100						
平均 0.50 2.2 12 35 SD 0 0.26 1.8 2.5 SD 0 0.26 1.8 2.5 SD 0 0.26 1.8 2.5 SD 0.26 SD 0.0071 0.47 SD 0.19								
SD 0 0.26 1.8 2.5								
各試験容器における生長速度と生長阻害率:								
$T \rightarrow 0$	主長阻害率(%)(1)	一 設定濃度 (mg/L) 	系列 2 3 4 5 6 平均 SD 1 2 3 平均 SD 1 2 3 平均 SD 1 2 3 平均 SD 1 2	生長速 (0-72h 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	度 阻) (() - - - - - - 1.1 0.i 0. 0. 0. 2	1害率 %) 50 12 56 47 36 .5		

	夕計段点	ピーナバナ	ス 仕 巨 本 庇 し	4. 上 巨 四 宝 壶 .			
	合試缺谷 設定濃度 (mg/L)		る生長迷度と 生長速度 (0-72h)	:生長阻害率: 阻害率 (%)	:		
	31	1 2 3 平均 SD	1.5 1.5 1.4 1.5 0.025	2.1 0.041 3.4 1.9 1.7			
生長阻害率(%)(2)	56	1 2 3 平均 SD	1.5 1.5 1.5 1.5 0.021	-0.76 0.019 2.0 0.41 1.4			
	100	1 2 3 平均 SD	1.4 1.4 1.4 1.45 0.024	6.7 4.0 3.8 4.8 1.6			
各濃度区における生長曲線		細胞数(×10^4 cells/mL) 100	各語 -○- Control -△- 9.5 (mg -□- 17 (mg -◇- 31 (mg -◇- 56 (mg -△- 100 (m	;/L) /L) /L) /L)	線		
	対昭区: 2	0.1 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		露時間(hours)	72 72 液は無色添明で	あり、曝露終了時には	
その他観察結果	細胞の増	殖により	禄色を呈して		/KIG/M L/26/10	のグライで来近年に 1 年 11 年 11 日 15	
注釈 対照区での生長は妥当か	該当せず はい						
対照区における反応の妥当性の考察	対照区には初期生た。対照区に対照区に対照区に対照区に対照区に対照区に	物量の82 おける日 ならない) おける繰	倍以上に増加 間生長速度の を満たしてい	殖し、有効性を の平均変動係 た。 長速度の変動	基準(16倍以上の 数は22%であり	を示し、曝露終了時に の増殖)を満たしてい 、有効性基準(35%を あり、有効性基準(7%	
	対照区のpHの変動幅が試験法の規定を超える上昇を示した。これは、揮発性物質の藻類生長阻害試験における限界性(密閉系の試験容器のため外部とのガス交換が不可能)と判断される。pH以外の試験環境条件は適切な範囲であり、本試験は試験法に準じたものであったと判断された。						

結論	
結果(ErC50)	72h-ErC50(生長速度法) > 100mg/L (設定濃度に基づく)
	72hr-NOEC(生長速度法) = 56mg/L (設定濃度に基づく)
結果(NOEC)	生長速度について有意差検定を行った結果、100mg/L濃度区において統計学的な有意差(p<0.01)が認められた。本有意差検定結果及び細胞観察結果より、NOECを上記の通り判定した。
信頼性スコア	1. 制限なく信頼性あり
キースタディ	キースタディ
信頼性の判断根拠	OECDテストガイドラインに従ってGLPで実施されており、試験成績の信頼性に影響を及ぼしたと思われる環境要因はなかった。
出典	社内データ(社外試験受託機関への委託試験データ) 試験実施機関名: 財団法人化学物質評価研究機構 久留米事業所
引用文献	文献9
備考	該当せず

- 4-4 微生物への毒性(例えばバクテリア)
- 4-5 水生生物への慢性毒性
- A. 魚への慢性毒性
- B. 水生無脊椎動物への慢性毒性
- 4-6 陸生生物への毒性
- A. 陸生植物への毒性
- B. 土壌生物への毒性
- C. 他の非哺乳類陸生種(鳥類を含む)への毒性
- 4-6-1底生生物への毒性
- 4-7 生物学的影響モニタリング(食物連鎖による蓄積を含む)
- 4-8 生体内物質変換と動態
- 4-9 追加情報

項目名	データ入力欄
(同一の試験項目について複数の試験があ	
る場合、当該項目行をコピー追加してくださ	青=任意項目
(\mathbb{\cdots}_o)	紫=一部の物質で必須項目

5-1トキシコキネティクス、代謝、分布

5-2 急性毒性

A. 急性経口毒性

A. 总住在口母住	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈	不純物については不明
方法	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 方法/ガイドライン	
	ガイドラインの適用に関する記載なし
GLP適合	不明
試験を行った年	データ出版年:1969(試験実施年は不明)
試験系(種/系統)	Rat
	Carworth-Wister
性別	M
投与量	不明(公比2で用量設定したとの記載あり)
(大) 	
各用量群(性別)の動物数	各用量群につき5匹(Mのみ)
溶媒(担体)	具体的な記載はないが、高用量群は原液のまま投与、低用量群はコーン油もしくは水を媒体とした旨の記載あり。
	強制経口投与
投与経路	1年前4年日1文子
観察期間(日)	14
<u>就求列申(日/</u>	
その他の試験条件	1群5匹の自家繁殖雄性Carworth-Wisterラット(4~5週齢;体重90~120g)に、非絶食下で、可能な場合は被験物質を媒体で希釈せずに原液まま経口単回投与(経口ゾンデを使用し胃内に注入)した。低用量の場合には、被験物質は水またはコーン油等で希釈して投与した。用量は公比2で設定。観察期間は投与後14日間。
統計学的処理	LD50値はThompsonの方法でWeilの表を用いて算出した。
結果	
各用量群での死亡数	不明(具体的データなし)
臨床所見	不明(データ記載なし)
剖検所見	不明(データ記載なし)
その他	該当せず
結論	
	7.07/4.00 10.4) 1/1 1
LD50値又はLC50値	7.07(4.82-10.4)mL/kg bw [()内は95%信頼限界]
	比重換算: 5730(3910—8430)mg/kg bw
雌雄のLD50値又はLC50値の違い 等	該当せず
注釈	米国Carnegie-Mellon大学所属Smyth HF氏他による報告データ
信頼性	2 制限付きで信頼性あり
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Patty's Industrial Hygiene and Toxicology 4th Edition 123, 30, 12.5.b
引用文献(元文献)	文献1, 文献2
備考	該当せず
NH; (2)	M=107

B. 急性吸入毒性

C. 急性経皮毒性

0. 心压性及毋压	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	不明
注釈 方法	不純物については不明
方法	
方法/ガイドライン	
	ガイドラインの適用に関する記載なし
GLP適合	不明
試験を行った年	データ出版年:1969(試験実施年は不明)

試験系(種/系統)	Rabbit
	New Zealand White
性別	M
投与量	不明
(大)里 	
各用量群(性別)の動物数	各用量群につき4匹(Mのみ)
溶媒(担体)	溶媒無し
/台外(151件)	
投与経路	経皮
汉子柱时	
観察期間(日)	14
	1群4匹の雄性New Zealand白色ウサギ(体重2.5~3.5kg)を使用した。動物の胴部を
その他の試験条件	刈毛し、被験物質を皮膚の塗布後、不透過性のプラスチックフィルムで塗布部位を閉
ての他の武殿末件	塞した(動物は動けない様に固定)。被験物質塗布後24時間目にフィルムを除去し、
	引き続き14日間観察した。
統計学的処理	LD50値はThompsonの方法でWeilの表を用いて算出した。
結果	
各用量群での死亡数	不明(具体的データなし)
臨床所見	不明(データ記載なし)
剖検所見	不明(データ記載なし)
その他	該当せず
結論	
	3.97(2.93-5.37)mL/kg bw [()内は95%信頼限界]
LD50値又はLC50値	比重換算: 3220(2370-4350)mg/kg bw
雌雄のLD50値又はLC50値の違い	
等	該当せず
注釈	米国Carnegie-Mellon大学所属Smyth HF氏他による報告データ
信頼性	2 制限付きで信頼性あり
信頼性の判断根拠	ピアレビューされたハンドブックからのデータ
出典	Patty's Industrial Hygiene and Toxicology 4th Edition 123, 30, 12.5.b
引用文献(元文献)	文献1, 文献2
備考	該当せず

- D. 急性毒性(その他の投与経路)
- 5-3 腐食性/刺激性
- A. 皮膚刺激/腐食
- B. 眼刺激/腐食
- 5-4 皮膚感作

5-5 反復投与毒性

試験物質名	3-メチルブタン-1-オール
CAS番号	CAS番号: 123-51-3
純度等	純度: 99.8%
	製造者:株式会社クラレ
	Lot No.: 82934
注釈	不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15%
方法	
方法/ガイドライン	OECD422
カムノガイドライン	
GLP適合	はい
試験を行った年	2008
試験系(種/系統)	Rat
	Crl: CD(SD)
性別	MF
	投与群: 0(媒体投与), 30, 100, 300 mg/kg/day
投与量	回復群: 0(媒体投与), 300 mg/kg/day
	0, 300mg/kg/day群: 雄12匹(内5匹は回復群として使用), 雌17匹(内5匹は非交配
各用量群(性別)の動物数	で回復群として使用)
17 川里什(江州) V 到 17 対	30, 100mg/kg/day群: 雄12匹, 雌12匹
	合計: 106匹

溶媒(担体)	1%Tween80を含む1%カルボキシメチルセルロースナトリウム(CMC-Na)水溶液
	強制経口投与
対照群に対する処理 投与期間(日)(OECD422等で、投与	溶媒投与、試験群と同様に処理
期間のデータ等がある場合、最長投 与期間)	
投与頻度	1日1回投与
回復期間(日)	14
試験条件	投与液量: 10mL/kg 被験液(投与液)の被験物質濃度: 30mg/mL(300mg/kg/day投与群用) 10mg/mL(100mg/kg/day投与群用) 3mg/mL(30mg/kg/day投与群用) 調剤頻度: 各被験液は7日間に1回の頻度で調製し、使用時まで褐色ガラス瓶に入れて室温(実測値:16~22°C)で保存した。 投与: 被験物質を0、30、100及び300mg/kg/dayの用量で、1群各12匹の雌雄のラットに、交配前14日間及び交配期間を通して剖検前日まで42日間、雌は交配前14日間及び交配期間並びに妊娠期間を通して剖検前日まで42日間、雌は交配前14日間及び交配期間並びに妊娠期間を通して分娩後授乳4日までの41~53日間経口投与した。0mg/kg/dayの用量群には媒体のみを同様に投与した。媒体対照群と300mg/kg/day投与群については、雄は12匹中の5匹を、雌は12匹の交配動物以外に5匹(非交配)を追加し、回復群として42日間投与した後、14日間の休薬期間を設け、毒性の可逆性を検討した。
統計学的処理	体重、摂餌量、摂水量、オープンフィールド内観察(排糞数、立ち上がり回数)、機能検査(着地開脚幅)、握力及び自発運動量、尿検査の定量的項目、血液学検査、血液化学検査及び器官重量は次のスキームで検定を行った。即ち、2群間での比較の際には、先ずはF検定(有意水準0.05、片側)で等分散性について評価し、等分散と判定された場合はStudentのt検定(有意水準0.05及び0.01、両側)により検定し、非等分散と判定された場合にはAspin-Welchのt検定(有意水準0.05及び0.01、両側)で検定した。また3群以上の間で比較する際には、Bartlett検定(有意水準0.01、両側)で先ず等分散性について評価し、等分散と判定された場合はDunnett検定(有意水準0.05及び0.01、両側)により検定し、非等分散と判定された場合はDunnett型mean ranktest(有意水準0.05及び0.01、両側)で検定した。
結果	
体重、体重増加量①	雄: 300mg/kg/day投与群において投与期間中(1~42日)の体重低値の傾向が見られた(39日目のみ統計学的有意差あり)。同群の投与期間中の体重増加量(平均: 121.0g)は、試験実施機関のの背景値(平均:132.8~157.6g:2006~2008年実施の6試験)を下回るものであったため、被験物質の投与の影響であると推察された。回復期間中では、300mg/kg/day投与群の体重増加は統計学的有意差は無いものの対照群を上回る傾向を示した。30及び100mg/kg/day投与群の投与期間中の体重変化に関しては被験物質による影響は認められなかった。 雌: 全ての投与群の体重に関して、投与期間中及び回復期間中とも被験物質による影響は認められなかった。

Т

	投与期間中の雄動物の体重の 一部の測定時点のデータを抜料						
	 時期 媒体対照群	 300mg/kg/day投与群					
	投与 1日目 369.1±11.8[1 15日目 428.4±18.6[1 29日目 480.4±19.5[1 39日目 515.5±22.5[1 42日目 513.6±23.0[1	12] 418.5±26.9[12] 12] 455.3±26.4[12] 12] 484.9±26.6[12]*					
体重、体重増加量②	投与期間中 増加量 144.5±14.3[1	12] 121.0±17.9[12]*					
	回復 1日目 515.4±30.9[5 14日目 534.8±37.1[5						
	回復期間中 増加量 19.4±12.4[5]] 27.2±6.3[5]					
	注) 単位 : g, *: p < 0.05 雄の30及び300mg/kg/day投与 比較して同等であった(データ転	:群の動物の体重の推移は媒体対照群と に記省略)。					
	雌動物については被験物質投	与の影響が認められていないため体重データの転記を省略。					
摂餌量、飲水量	摂餌量: 雄・雌とも投与期間中及び回復期間中とも被験物質による影響は認められなかった。尚、300mg/kg/day投与群の雄で投与39日目に、100mg/kg/day投与群の雌で投与8日目に摂餌量の低値がみられたが、一時的な変化であることから偶発的変化と判断された。						
		いて、投与終了週の24hr(投与37∼38日目間)と回復終了 別)の摂水量を測定したが、対照群と各投与群の間に差は					
	300mg/kg/day投与群の雌で 過性の発現であり、この様な 発的変化と判定された。	で接触刺激による痙攣が投与9日目に1例みられたが、一 な痙攣はラットで自然発症することが知られているため偶					
臨床所見(重篤度、所見の発現時期 と持続時間)	ホームケージ内観察、手に持っての観察、オープンフィールド内観察、機能検査、握力測定においては、投与期間・回復期間中とも何れの動物にも異常は認められなかった。						
	自発運動量の測定において 差は認められなかった。	、投与期間中・回復期間中とも対照群と各投与群の間に					
眼科学的所見(発生率、重篤度)	該当せず(眼科的検査未実施	施)					
	投与期間終了時検査: 何れ間に差はなかった。	この検査項目においても雌雄とも対照群と各投与群との					
血液学的所見(発生率、重篤度)①	回復期間終了時検査: 300mg/kg/day投与群の雌雄で好塩基球の百分率に僅かな差であるが有意な差が認められたが、絶対数に差が無く、投与期間終了時検査では変化が認められていないこと、及び他の白血球検査項目に変化が無いことから偶発的変化と判断した。その他の検査項目については、雌雄とも対照群と各投与群との間に差はなかった。						

	血液学的検査結果	具(平均値±SD	[各群5四	[について測定]						
		 投与期間	 終了時							
	性 用量(mg/kg/da	 ay) 0	1000	0	1000					
	雄 白血球百分率 好塩球%	0.3±0.1	0.3±0.	0.3±0.1	0.3±0.1*					
血液学的所見(発生率、重篤度)②	好塩基球数 (×100/μL) 	0.3±0.1	0.4±0.2	0.4±0.2	0.3±0.1					
	雌 白血球百分率 好塩球%	0.2±0.1	0.3±0.	0.3±0.1	0.2±0.1*					
	好塩基球数 (×100/μL) 	0.3±0.1	0.6±0.3	0.1±0.1	0.1±0.0					
	注)*:p<0.05									
血液生化学的所見(発生率、重篤 度)①	雄: 投与期間終れたが、毒性症状をから温性が、毒性症状をから高値が認めと判が認める。値が認める。値が認める。 世に、投与期間終れた。 世に、投与期間終いる。 から偶発的をある。	状を象徴する場合的変化であるられたが軽度がされた。30mg あされたが整度がいたが投います。 ではいいが投います。 では期間をいい、 ではいい、 ではいい、 ではいい、 ではいい、 ではいい。 ではいい、 ではいい。 ではい。 では	加ではな と判定されで が変化であ /kg/day投 は与用量と の検査項 の時に30	く、且つ軽度ないた。同じく300m いり関連する変化 与群においてでの関連が無いる 目においても対 Omg/kg/day投	変化で関連すっg/kg/day投っrg/kg/day投いとを伴わない有意は尿素系とから偶発には解群と各投りに、	「る変化ならいではない」 を表する。 「ないではないではない。」 「ないではないではない。」 「ないではないではないではない。」 「ないではないではないできます。」 「ないではないではないできます。」 「ないではないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないではないできます。」 「ないできます。」 「ないできまないできます。」 「ないできまないできます。」 「ないできまないできます。」 「ないできまないできまないできます。」 「ないできまないできまないできます。」 「ないできまないできまないできまないできまないできまないできまないできまないできま	を伴わ有無素の的無さ はまな減			
	雄: 血液生化学的検査結果(平均値±SD) [各群5匹について測定]									
		投与期間終了時			回復期間	终了時				
表演生儿类的写 日/ 多生态 毛笙	用量(mg/kg/day)	0 30	100	300	0	300	_			
血液生化学的所見(発生率、重篤 度)②	CI (mg/dL) BUN (mg/dL)	56±15 47± 107±2 108 18±1 15± 6.3±0.3 7.1±	±1 108:	±1 109±1* :2 16±1	44±12 107±2 18±1 6.3±0.7	37±3 108±1 17±1 5.8±0.3				
	注)*:p < 0.05 CI:塩素, BUN:尿素窒素, P:無機リン									
	雌: 血液生化学的検査結果(平均値±SD) [各群5匹について測定]									
		投与期間終了時			回復期間 	终了時 				
血液生化学的所見(発生率、重篤 度)③	用量(mg/kg/day)	0 30	100		0	300				
	PL (mg/dL) 注)**:p < 0.01 PL:リン脂質	120±24 122 	±24 117 	/±18 141±17 	142±12 	115±1 	** 			
尿検査所見(発生率、重篤度)	尿検査は雄動物 においても対照郡	詳と各投与群の	間に差は	認められなかっ		可れの検	査項目			
死亡数(率)、死亡時間	何れの群におい				· 杂生铅度 45	刃からかっ	たが 点			
	投与期間終了時のれも発生頻度、病 と判断された。 投与期間終了時の	理学的性状、及)剖検所見(有例	び投与用量 ·見動物数 <i>。</i>	_と の関連性が認	!められないこ					
剖検所見(発生率、重篤度)①			隹 		此推 					
	用量(mg/kg/day)	(30	100 300	0 30	100	300			
	肝の横隔膜ヘルニ 肺の暗赤色巣 腺胃の暗赤色巣	ンア結節 C O/ O/	7 1/12	0/12 0/7 0/12 0/7 0/12 0/7	0/12 1/1 0/12 0/12 4/12 0/12	0/12	0/12			

	回復期間終了時れも発生頻度					頻度が認めら	っれたが、何			
	れも発生頻度、病理学的性状から偶発的所見と判断された。 回復期間終了時の剖検所見(有所見動物数/検査動物数):									
剖検所見(発生率、重篤度)②			<u> </u>	雌						
	用量(mg/kg/day	,) 	0 300	0	300					
	腺胃の暗赤色 精巣の小型化 		0/5 0/5 1/5 0/5	0/5	1/5 _ 					
臓器重量①	雄おのある2.88g/100g体はのある2.88g/100g体はのある2.88g/100g体はのある2.88g/100g体はのかのでは、相対のでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、	低値が認めた。 対重:2006~2 対重:2006~2 が要が、性臓のがれた。 対域は、が変数に対している。 は、が変数に対している。 は、が変数に対している。 は、が変数に対している。 は、が変が、が変が、が、が、が、のでは、は、が、のでは、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は	られ、絶対 ~15.12g;20 1値:2.60~ 008年実施 008年実施 動範囲間有の 動電量と、 からの300mg/ 変化のことか	重量(平均値 006~2008年 2.74g/100g内 の6試験)といいでは ではないでは、 ででは、 ででは、 ででは、 では、 では、 では、 では、 では、 で	1.1.73~12.8 実施の6試験 はの6試験 は間では は間では は間では は間では は間では は間では は間では は関係を はいまする。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	54g) は試験(i)を若りを若りを平面にといるです。 でである変断がいるでは、 でである変がです。 でである変ができますが、 ででは、 ででは、 ででは、 では、 では、 では、 では、	実回。48 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			
	雄: 臓器重量検査結果(平均値±SD) [血液学・血液生化学検査に供した5匹について測定]									
	用量(mg/kg/day)	投与期間終了	了時 30	100	300	回復期間終 ⁻	了時 300			
		14.35±0.49	11.96±0.83*	* 12.54±1.27	* 11.73±0.70** 2.62±0.14**	13.00±1.25	12.44±1.28			
臓器重量②	脳 重量 相対重量	2.12±0.1 0.44±0.01			2.11±0.10 0.47±0.02		2.12±0.04× 0.45±0.01			
	心臓 重量相対重量	1.46±0.1 0.30±0.02		1.36±0.04 0.30±0.02			1.37±0.05* 0.29±0.02			
	注)重量:g, 木 *:p < 0.05,	====================================	 00g-体重							
	雌: 臓器重量検	査結果(平均	直±SD)[血	液学•血液生化	ご学検査に供した	-5匹について	則定]			
		投与期間終了時回復期間終								
職器重量③	用量(mg/kg/day)	0	30	100 300	0	300				
	副腎 重量 相対重量	92±15 28±6	92±8 29±2		±3* 73±10 ±2 25±3					

	投与期間終了時の雌雄動物の臓器							見・発生	頻度が認めら	
	れたが、何れも出現頻度、病理組織学的性状から偶発的所見と判断された。 投与期間終了時の剖検所見(有所見動物数/検査動物数):									
	用量(mg/kg/day)	0	0 30		300	0	30	100	300	
病理組織学的所見(発生率、重篤 度)①	心臓 限局性細胞浸潤(軽微) 腎臓 尿細管再生(軽微) 腎臓 ヒアリン尿円柱(軽微)	1/5 4/5 1/5	- - -	- -	1/5 3/5 0/5	0/5 1/5 0/5	- -	-	0/5 2/5 0/5	
	腎臓 間質鉱質沈着(軽微) 肝臓 横隔膜ヘルニア結節(軽度	0/5	-	_ _ _	0/5 0/5 0/5	1/5 0/5	- - 1/1	- -	0/5 0/5 0/5	
	肝臓 微小肉芽腫(軽微) 肺 動脈壁の鉱質沈着(軽微)	5/5 1/5	- 0/1	-	4/5 0/5	2/5 0/5	0/1	- -	2/5 1/5	
	肺 肺胞の出血(軽微) 胃 腺胃の糜爛(軽微~軽度)		-	- -	0/5 0/5	0/5 4/6	- -	- 4/4	1/5 1/5	
	精巣 精巣管の萎縮(軽微) 甲状腺 異所性胸腺組織(軽微)	1/5 1/5	_ _ 	_ _ 	0/5 0/5		_ _ 	_ _ 	0/5	
	回復期間終了時の臓器の病理 れたが、何れも出現頻度、病理 回復期間終了時の剖検所見(オ	組織学的	的性状	から偶	発的所	見と判題			度が認めら	
病理組織学的所見(発生率、重篤 度)②		雄			雌 					
12/C	用量(mg/kg/day) 	()	300	0	300				
	胃 腺胃の糜爛(軽度) 精巣 精巣管の萎縮(軽度) 	_ 1 	/1	- -	- -	1/1				
実際に摂取された量	該当せず									
用量反応性	300mg/kg/dayの用量では被れたが、100及び30mg/kg/da は認められなかった。	験物質 ayの投-	投与し	こ起因	する変 験物質	化として に起因	すると	で (考え)	値が認めら られる変化	
注釈 結論	該当せず									
NOAEL (NOEL)	雄: NOEL=100mg/kg/day 雌: NOEL=300mg/kg/day									
LOAEL (LOEL)	雄: LOEL=300mg/kg/day 雌: LOEL>300mg/kg/day									
NOAEL/LOAELの推定根拠	高用量300mg/kg/dayの被験物質投与の雄動物において、被験物質投与に起因するごく軽度な体重増加抑制(投与終了後に回復性あり)が認められたが、他の検査成績に影響が無かったことから、中用量である100mg/kg/dayを雄動物に対するNOELとした。雌動物については、被験物質の各用量群における全ての検査成績に影響が無かったため、高用量300mg/kg/dayをNOELとした。									
雌雄のNOAEL(LOAEL)の違い等 注釈	該当せず 試験実施機関: 株式会社ホ	ジリ++-	ーチ セ	ハ ター	- 御殿	場研究	' 所			
信頼性	1 制限なく信頼性あり	· / / /	, ,	<u>. </u>	四小八人	<u>- 191 191 7 1</u>	171			
信頼性の判断根拠	ガイドラインに従って実施され			である	0					
出典 引用文献(元文献)	社内データ(専門機関への委 文献10	託試験	₹)							
備考	本試験における被験物質のではCrl:CD(SD)ラットを用いたIAA250, 1000 mg/kg/day;各群試験においては、1000 mg/k 性では投与6及び9日に各1份的検査、血液生化学的検査1250mg/kg/day以下の投与群に、14日間投与試験の致死る影響が生じる可能性が考え約3で除して100及び30 mg/k	の14日 は3匹雌 g/day找 が死亡 にでは表 をの約1 えられる	間反行 3匹)の と与の こしたが も毒性 性的が /3にか 300m	復経口の 機様で が、 学化は 要化は g/kg/	投与書きを投与を を投生学は は異られて は dayを本	性試験に設行した。 とのではいるのではない。 というではない。 というではない。 というでは、 というと。 というでも、 というでも、 というでも、 というでも、 というでも、 というでも、 とっと。 とっと。 とっと。 とっと。 とっと。 とっと。 とっと。 とっと	食(投した。) はた。) はた。 はこれない は高用	与量:(C こ静化: 重量、た し上が反 し上が反し), 15, 60, 4日間投与 がみられ、 血液形態学 こ。また、と 結果をもによ 、以下公比	

5-6 in vitro遺伝毒性

A. 遺伝子突然変異

A. 遺伝子突然変異												
試験物質名	3-メチルブタン-	-1-オール										
CAS番号	123-51-3											
純度等	99.9%	- (+ T = 10										
注釈 方法	不純物について	はか明										
	(OECD471に試	験方法一致)									
方法/ガイドライン	化学物質GLP(食品添加物の指定及び使用規準改正に関する指針(衛化第29号, 1996) 化学物質GLP(環保安第41号・生衛発第268号・平成12・02・14基局第1号)										
GLP適合	はい											
試験を行った年		2004										
細胞株又は検定菌		S. typhimurium 4種(TA 1535 & TA 1537 & TA 98 and TA 100) E.coli WP2 uvr A										
代謝活性化(S9)の有無	有											
	<用量〉 濃度語 本試題 <s9の調整方法 臓から調製(キ <溶媒〉 DMSO <陽性対照>AF</s9の調整方法 	〈方法〉 プレインキュベーション法 <用量〉 濃度設定試験; 0、50、150、500、1500、5000 μg/プレート 本試験 ; 0、313、625、1250、2500、5000 μg/プレート 〈S9の調整方法〉 フェノバルビタールおよび5,6-ベンゾフラボンで誘導されたラット肝臓から調製(キッコーマン株式会社より購入) 〈溶媒〉 DMSO 〈陽性対照〉AF2;2-(2-フリル)-3-(5-ニトロ-2-フリル)アクリルアミド、SA;アジ化ナトリウム、9AA;9-アミノアクリジン、2AA;2-アミノアントラセン										
	 菌株	代謝活性化	 比なし		代謝活性	E化あり(S	9Mix+)					
試験条件	四体	陽性対照	濃度(μg/	プレート)	陽性対照	: 濃度(<i>p</i>	! g/プレート)					
	TA100 TA1535 Wp2 uvr =	SA	0.01 0.5 0.01		2AA 2AA 2AA	1 2 10						
		AF2	0.1 80		2AA 2AA	0.5 2						
	〈プレート数/用 〈変異原性に関 異コロニー数(2 と用量設定試験 た。	 する陽性判2 枚のプレート	への平均値)	が陰性対照	照の2倍以	上に増加し	、用量相関性					
結果 <i>細胞毒性</i>												
代謝活性ありの場合	=+11501 ナムナの	田里不细吃	主州 (七司)4	1 to +2 to -	+_							
	試験した全ての											
代謝活性なしの場合 変異原性	試験した全ての	が用里で補肥	毋且は総の	つれいよかつ	0120							
· 英共原任	試験したすべての本試験(代謝活性		原性は認めら	られなかった	0							
	被験物質 濃度 (μg/プレー		数(コロニー) TA1535			TA1537						
	0 313	123, 147 [135] 133, 133	14, 9 [12] 8, 12	43, 33 [38] 31, 40	43, 31 [37] 31, 31	14, 11 [13] 6, 19						
小型工业七八〇日人	625	[133] 132, 130	[10] 9, 13	[36] 44, 42	[31] 32, 31	[13] 15, 16						
代謝活性ありの場合	1250	[131] 121, 135 [128]	[11] 14, 5 [10]	[43] 42, 32 [37]	[32] 41, 34 [38]	[16] 10, 20 [15]						
	2500	121, 135	8, 12	29, 32	23, 27	19, 15						
	5000	[128] 144, 128 [136]	[10] 14, 10 [12]	[31] 27, 45 [36]	[25] 29, 22 [26]	[17] 14, 10 [12]						
	陽性 対照	2AA 813, 806	2AA 312, 313 [313]	2AA 792, 833	2AA 388, 347	2AA 201, 183						
		[810] 	[313] 	[813] 	[368] 	[192]						

		試験したすべての用量で変異原性は認められなかった。 本試験(代謝活性化なし):								
		148, 141	 18, 11	30. 32	18, 23	11, 12				
	313	[145] 124, 145 [135]	14, 9	[31] 25, 26 [26]	[21] 17, 20 [19]	[12] 7, 7 [7]				
謝活性なしの場合	625	120, 137 [129]	13, 14 [14]	31, 25 [28]	17, 21 [19]	12, 10 [11]				
	1250	140, 149 [145]	[8]		12, 20 [16]	11, 6 [9]				
	2500	136, 141 [139]	[9]	28, 31 [30]	15, 17 [16]	7, 9 [8]				
	5000	127, 133 [130]	6, 10 [8]	33, 32 [33]	19, 17 [18]	11, 6 [9]				
	陽性 対照 	AF2 421, 452 [437]		AF2 199, 183 [191]	AF2 590, 617 [604]					
釈	<mark>該当せず</mark>									
論 伝子突然変異	陰性									
因于天然复<u>英</u> 釈	試験実施機関: 則	才団法人食	品薬品安	全センター	秦野研究	所				
顶	1 制限なく信頼性									
頼性の判断根拠	ガイドラインに従っ	て実施され	iたGLP試	験である。						
典	国立医薬品食品 員会を経由して情	首生研究所	データ(専	門機関への	の委託試験)を内閣府	食品安全			
用文献(元文献)	文献3									
考	該当せず									

B. 染色体異常

B. 梁色体異常	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	99.9%
注釈	不純物については不明
方法	
方法/ガイドライン	(OECD473に試験方法一致) 食品添加物の指定及び使用規準改正に関する指針(衛化第29号, 1996) 化学物質GLP(環保安第41号・生衛発第268号・平成12・02・14基局第1号)
GLP適合	はい
試験を行った年	2004
細胞株	チャイニーズ・ハムスター肺由来細胞(CHL/IU)
代謝活性化(S9)の有無	有
試験条件	〈用量〉細胞増殖阻害試験の結果に基づき以下の様に用量を設定した。 -S9mix(6時間処理-18時間回復): 0, 0.11, 0.23, 0.45, 0.9 mg/mL (24時間連続処理): 0, 0.11, 0.23, 0.45, 0.9 mg/mL +S9mix(6時間処理-18時間回復): 0, 0.11, 0.23, 0.45, 0.9 mg/mL 〈S9の調整方法〉フェノバルビタールおよび5,6-ベンゾフラボンで誘導されたラット肝臓から調製(キッコーマンより購入) 〈溶媒〉日局注射用水 〈陽性対照〉 -S9mix:マイトマイシンC 0.1 μg/mL(6時間処理), 0.05 μg/mL(24時間処理) +S9mix:シクロホスファミド 10 μg/mL 〈デイッシュ/用量〉染色体標本用:2, 細胞増殖率測定用:2 〈染色体分析〉用量あたり200中期分裂像(100細胞/dish)について構造異常の種類と数、用量あたり800中期分裂像(400細胞/dish)について倍数性細胞の数を調べた。 〈判定〉染色体の構造異常(gapを除く)を有する細胞及び倍数性細胞の数について、陰性対照群と被験物質処理群の間で、Fisherの直接確率接により有意差水準1%:片側検定)により有意差検定を実施した。またFisherの直接確率検定により有意差の認められた処理条件について、Cochran-Armitageの傾向検定(有意差水準1%:片側検定)により用量依存性の有無を検討した。これらの検定結果を参考とし、生物学的な観点からの判断を加味して染色体異常誘発性の評価を総合的に行った。

結果											
<i>細胞毒性</i> 代謝活性ありの場合	試験した全て	の田皇で	公田 8 石。	丰州	(十三五	ו או	` to t		- t-		
										。 Cの用量で細胞毒	性は認められ
代謝活性なしの場合	なかった。				,,,		H- 4-32				12.0.40.1
染色体異常											
	試験したすべて	の用量で	染色	体異常	常誘夠	発性	は認	めら	れな	かった。	
	染色体異常試験	験結果(68	時間処	理法	ŧ, +:	S9m	ix):				
											
	用量	増殖率							-	(800細胞中)	
	(mg/mL)	(%) 	gap o	ctb (cte c	sb 	cse	他			
		100		1 0			0 (0		3	
代謝活性ありの場合	0.11 0.23		(0 0) n	浿) 0		せず 0	0		4	
	0.45		2 0					0		2	
	0.90	89	0 3	3 0	0) (0	0		1	
	$CP(10 \mu \text{ g/mL})$) –	3 1	18 ;	51	1	0	0		0	
	Abbraviationa.									 ctb=chromatid bre	, ale
										=chromosome exch	
	& ring) CP:陽性対照シ										
		いて試験	したす	べて	の用	量・	全ての	の処	理時	間で染色体異常誘う	発性は認められ
	なかった。										
	染色体異常試験	験結果(68	時間如	理法	ŧ, -s	9mix	<) :				
	被験物質	 細胞		 冓造昇	異常の	 D数((200	細胞	 !中)	数的異常の数	
	用量						(800細胞中)				
	(mg/mL)	(%) 	ga 	p ct	.b cte	e cs	sb c	se 	他 		
	0	100	1	1	1	0				1	
代謝活性なしの場合①	0.11 0.23	99 96	(1	1	0	測 0	定せ 0	-	,	2	
	0.45	98	0	0	1	0				3	
	0.90	90	0	3	1	2	0	C)	4	
	MMC (0.1 μ g/m	nL) –	7	40	98	3 4	4	1	0	0	
	Abbroviations									oth = observatid bro	ook
	Abbreviations:: gap=chromatid gap & chromosomal gap, ctb=chromatid break, cte=chromatid exchange, csb=chromosome break, cse=chromosome exchange (dicentric										
	& ring)	7 / 7	/ S . S . /	^							
	MMC:陽性対照	スイトマ	1ンン(U							
			試験	したす	すべて	ての)	用量	·全7	この奴	1理時間で染色体異	常誘発性は認
	められなかった	0									
	染色体異常試験	験結果(24	時間	連続	処理》	去, -	-S9m	ix) :			
	 被験物質	 細胞	 村	 黄造星	異常の	 D数((200	細胞	 !中)	 数的異常の数	
	用量	増殖	率 -							(800細胞中)	
	(mg/mL)	(%) 	ga	p ct	.b cte	e cs	sb c	se 	他 		
	0	100	1	2	0	0		0		0	
代謝活性なしの場合②	0.11	98	(0	0	_	定せ)	
	0.23 0.45	96 97	0	2 0	0	0	1	(0 1	
	0.90	81	1	1	0	0				Ö	
	MMC (0.05 μ g/	'mL) –	 7	43	 87	 ' 3) 1	0	0	
										ctb=chromatid bre chromosome exch	
	& ring)				0/110	30111	.5 516	ourt,	330 -	S. A GINGSOING CACIT	ango (aloonalo
	MMC:陽性対照	マイトマイ	(シン(С							
注釈	該当せず										
結論											

染色体異常	陰性
注釈	試験実施機関・財団法人食品薬品安全センター秦野研究所
信頼性	1 制限なく信頼性あり
信頼性の判断根拠	ガイドラインに従って実施されたGLP試験である。
出典	国立医薬品食品衛生研究所データ(専門機関への委託試験)を内閣府食品安全委員会を経由して情報提供された。
引用文献(元文献)	文献4
備考	該当せず

5-7 in vivo遺伝毒性

5-7 in vivo遺伝毒性	
試験物質名	3-メチルブタン-1-オール
CAS番号	123-51-3
純度等	99.9%
注釈	不純物については不明
方法	
方法/ガイドライン	(OECD474に試験方法一致)
	食品添加物の指定及び使用規準改正に関する指針(衛化第29号, 1996)
	化学物質GLP(環保安第41号·生衛発第268号·平成12·02·14基局第1号)
試験のタイプ	micronucleus assay
GLP適合	はい
試験を行った年	2004
計段で(様 /で炊)	CD-1(ICR) マウス
試験系(種/系統)	
性別	M
	2000, 1000, 500, 0 mg/kg(bw)/day ×2日間投与
汉子里	
投与経路	強制経口投与
仅 子 在 的	
試験期間	2004年3月2日~2004年6月10日
試験条件	〈毒性予備試験〉各用量についきM性・F性各3匹ずつに媒体(オリーブ油)に溶解した被験物質を2000・1000・500・250mg/kg/day×2日間投与。投与直後・6時間後・24時間後に生死と一般状態を観察した。 〈本試験〉毒性予備試験の結果(2000mg/kg/dayの用量で毒性発現を認めず;性差なし)に基づいて、M性マウス(1群5匹)を用いて媒体(オリーブ油)に溶解した被験物質2000・1000・500mg/kg/day×2日間強制経口投与の3用量群、陰性対照群(オリーブ油10mL/kg/day×2日間投与)、及び陽性対照群(シクロホスファミド1水和物50mg/kg×1回:水溶液で投与)の5群構成で試験を実施した。投与直後・6時間後・24時間後に生死と一般状態を観察した。 〈骨髄標本の作製〉最終投与の24時間後に、マウスを頚椎脱臼法にて致死させ、両側の大腿骨から0.6mLの非働化したウシ胎児血清を用いて骨髄細胞を遠心管に洗い出し、約200g×5分間遠心分離して、上清を除いた。残渣をピペティングして作成した骨髄細胞浮遊液から各個体につき3枚の骨髄塗抹標本を作製した。骨髄塗抹標本は、自然乾燥後、メタノールで5分間固定し、標本観察時まで室温で保管した。 〈小核の観察〉標本観察の直前に、骨髄塗抹標本をアクリジンオレンジ蛍光染色し、蛍光顕微鏡(ブルー励起)下で、515及び530nmの吸収フィルターを装着し、倍率1000倍にて観察した。骨髄塗抹標本は、各個体について2名の観察者により観察し、1個体当たり2000個(観察者1名あたり1000個)の幼弱赤血球を観察し、その内の小核を有する幼弱赤血球の数を記録した。また、骨髄細胞の増殖抑制の指標として、1個体当たり1000個(観察者1名当たり500個)の赤血球を観察し、その内の幼弱赤血球の数を求めた。
統計学的処理	小核出現頻度については、陰性対照群と被験物質投与群の間、及び陰性対照群と 陽性対照群の間で、有意水準5%及び1%でFisherの正確確率検定法(片側検定)によ り有意差検定を行った。尚、多重性を考慮してBonferroniの補正を行った。また、小核 出現頻度の用量(対数値)依存性について、有意水準5%及び1%でCochran-Armitage の傾向検定(片側検定)を行った。
結果	

	M性マウスの結果: 略称) IAA: 被験物質(3-メチルブタン-1-オール), CP: 陽性対照物質(シクロホスファミド1 水和物)								
	群	/]	 N核赤血球/幼弱赤血球	 幼弱赤血球/総赤血球					
	 陰性対照群	5匹の計 %(Mean±SD)	13 / 10000 (0.13±0.04)	2732 / 5000 (54.6±11.9)					
性別及び投与量別の結果	IAA 500mg/kg/day	5匹の計 %(Mean±SD)	14 / 10000 (0.14±0.10)	2675 / 5000 (53.5±5.7)					
	IAA 1000mg/kg/day	5匹の計 %(Mean±SD)	11 / 10000 (0.11±0.04)	2947 / 5000 (58.9±9.0)					
	IAA 2000mg/kg/day	5匹の計 %(Mean±SD)	7 / 10000 (0.07±0.03)	2619 / 5000 (52.4±4.8)					
	CP	5匹の計 %(Mean±SD)	186 / 10000 (1.86±0.22)**:p<0	2848 / 5000 0.01 (57.0±9.1)					
遺伝毒性効果	陰性 特記事項なし								
NOAEL (NOEL)	NOEL=2000m	g/kg							
LOAEL (LOEL)	該当せず								
統計的結果	統計学的に有効なかった。	意な増加は認め び陽性対照群の	かられず、用量に依存し [、] の小核出現頻度は、何れ	おいても陰性対照群と比較して て有意に増加する傾向も認めら いも背景データのばらつきの範					
注釈	指針値である2	000mg/kgを最		れなかったが、投与量の上限 から、試験結果は小核誘発性を					
結論	RA Lil								
in vivo遺伝毒性	陰性	마미보니스		7 TII 100 SC					
注釈 信頼性	試験実施機関 1 制限なく信頼		品薬品安全センター秦里	沙饼					
<u>信粮性</u> 信頼性の判断根拠			たGLP試験である。						
出典		品衛生研究所	データ(専門機関への委	託試験)を内閣府食品安全委					
引用文献(元文献)	文献5								
備考	該当せず								

5-8 発がん性

5-9 生殖・発生毒性(受胎能と発生毒性を含む)

A. 受胎能

/. XIII III							
試験物質名	3-メチルブタン-1-オール						
CAS番号	CAS番号: 123-51-3						
純度等	純度: 99.8%						
	製造者: 株式会社クラレ						
	Lot No.: 82934						
注釈	不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15%						
方法							
方法/ガイドライン	OECD422						
試験のタイプ	one generation						
GLP適合	はい						
試験を行った年	2008						
試験系(種/系統)	Rat						
武衆术(性/ 木杌)	Crl: CD(SD)						
性別	MF						
投与量	0(媒体投与), 30, 100, 300 mg/kg/day						
汉子里							
	0,300mg/kg/day群: 雄12匹(内5匹は回復群として使用),雌17匹(内5匹は非交配						
ᄼᄆᄝᄣᄼᄔᇜᆡᄼᅙᆉᄔᄦᄣ	で回復群として使用)						
各用量群(性別)の動物数	30, 100mg/kg/day群: 雄12匹, 雌12匹						
	合計: 106匹						

溶媒(担体)	1%Tween80を含む1%カルボキシメチルセルロースナトリウム(CMC-Na)水溶液
 投与経路	強制経口投与
	雄親動物: 交配2週間前より42日間投与 雌親動物: 交配2週間前より分娩4日までの41~53日間投与
	雄雌ともに14日間
試験条件	投与液量: 10mL/kg 被験液(投与液)の被験物質濃度: 30mg/mL(300mg/kg/day投与群用) 10mg/mL(100mg/kg/day投与群用) 3mg/mL(30mg/kg/day投与群用) 調剤頻度: 各被験液は7日間に1回の頻度で調製し、使用時まで褐色ガラス瓶に入れて室温(実測値:16~22°C)で保存した。 投与: 被験物質を0、30、100及び300mg/kg/dayの用量で、1群各12匹の雌雄のラットに、交配前14日間及び交配期間を通して剖検前日まで42日間、雌は交配前14日間及び交配期間が近に妊娠期間を通して対験後授乳4日までの41~53日間経口投与した。0mg/kg/dayの用量群には媒体のみを同様に投与した。 交配条件: 交配期間中は1ケージ中に雄1匹と雌1匹を同居させた。 妊娠~出産・哺育までの条件: 妊娠17日~授乳4日までは1腹単位でケージに収容した。
統計学的処理	体重、摂餌量、摂水量、発情期像発現回数、性周期、交尾までに要した日数、妊娠期間、黄体数、着床痕数、生存児数、オープンフィールド内観察(排糞数、立ち上がり回数)、機能検査(着地開脚幅)、握力及び自発運動量、尿検査の定量的項目、血液学検査、血液化学検査及び器官重量は次に示す模式図の方法に従って検定した。なお、出生児体重(雌雄別)については、母動物ごとの平均値を求めた後、検定を行った。即ち、2群間での比較の際には、先ずはF検定(有意水準0.05、片側)で等分散性について評価し、等分散と判定された場合はStudentのt検定(有意水準0.05及び0.01、両側)により検定し、非等分散と判定された場合にはAspin-Welchのt検定(有意水準0.05及び0.01、両側)で先ず等分散性について評価し、等分散と判定された場合にはAspin-Welchのt検定(有意水準0.05及び0.01、両側)で先ず等分散性について評価し、等分散と判定された場合にはAspin-Welchのt検定(有意水準0.05及び0.01、両側)で大ず等分散性について評価し、等分散と判定された場合はDunnett検定(有意水準0.05及び0.01、両側)により検定し、非等分散と判定された場合はDunnett型mean rank test(有意水準0.05及び0.01、両側)で検定した。 交尾率、授精率、受胎率、出産率、出生児の性比、聴覚反応、接近反応、接触反応、痛覚反応、瞳孔反射、空中正向反射は、各群の交尾動物数、雌を妊娠させた雄動物数、妊娠雌動物数、生存児出産雌動物数、雄生存児数、雌生存児数、正常反射のみられた動物数の合計を求め、イェーツの連続修正による x 2検定を行った(有意水準0.05及び0.01、両側)。ただし、期待度数が5以下のセルがみられる場合にはFisherの直接確率計算法により検定を行った(有意水準0.05及び0.01、両側)。
体重、体重増加量①	雄親動物: 300mg/kg/day投与群において投与期間中(1~42日)の体重低値の傾向が見られた(39日目のみ統計学的有意差あり)。同群の投与期間中の体重増加量(平均:121.0g)は、試験実施機関のの背景値(平均:132.8~157.6g:2006~2008年実施の6試験)を下回るものであったため、被験物質の投与の影響であると推察された。回復期間中では、300mg/kg/day投与群の体重増加は統計学的有意差は無いものの対照群を上回る傾向を示した。30及び100mg/kg/day投与群の投与期間中の体重変化に関しては被験物質による影響は認められなかった。 雌親動物: 全ての投与群の体重に関して、投与期間中及び回復期間中とも被験物質による影響は認められなかった。

	投与期間中の 一部の測定時			変化 (平均	均±SD [動	物数])		
	 時期	 媒体対	 対照群	300mg	g/kg/day投与	 5 群		
	投与 1日目 15日目 29日目 39日目 42日目	428.4: 480.4: 515.5:	±11.8[12] ±18.6[12] ±19.5[12] ±22.5[12] ±23.0[12]	418.5: 455.3: 484.9:	±15.5[12] ±26.9[12] ±26.4[12] ±26.6[12]* ±27.4[12]			
体重、体重増加量②	投与期間中 増加量	144.5	±14.3[12]	121.0	±17.9[12]*			
	回復 1日目 14日目		±30.9[5] ±37.1[5]		±23.0[5] ±22.4[5]			
	回復期間中 増加量	19.4±	=12.4[5]	27.2	±6.3[5]			
	注)単位:g, 雄親動物の3 比較して同等	D及び300r	ng/kg/day		本重の推移は	は媒体対照 郡	¥Ł	
	雌親動物につ略。	いては被	験物質投	の影響が	「認められて	いないためは	本重データの転記を省	
摂餌量、飲水量	められなかっ	た。尚、 与8日目に	300mg/kg こ摂餌量の	/day投与	群の雄で投	5与39日目1	験物質による影響は認 こ、100mg/kg/day投与 変化であることから偶	
		(回復9~	10日目間				~38日目間)と回復終 群と各投与群の間に差	
		の発現で	あり、このネ				59日目に1例みられた ることが知られている	
臨床所見(重篤度、所見の発現時期 と持続時間)	ホームケージ内観察、手に持っての観察、オープンフィールド内観察、機能検査、握 カ測定においては、投与期間・回復期間中とも何れの親動物にも異常は認められな かった。							
	親動物の自発運動量の測定において、投与期間中・回復期間中とも対照群と各投与 群の間に差は認められなかった。							
	妊娠率につ	いては対	照群と各技	と 与群の 「	間に有意な	差は認めら	れなかった。	
	交配後の妊							
妊娠率(妊娠個体数/交配数)	用量(mg/kg		0	30	100	300		
	交配雌動物 交尾成立雌 妊娠雌動物 妊娠率(%)	動物数	12 12 12 100.0	12 12 12 100.0	12 12 12 100.0	12 12 11 91.7		

	交配(雄親動物と雌親動物の同居開始)前の雌動物の性周期回数・性周期日数、及び交配開始から交尾成立までの日数については、対照群と各投与群の間に差は認められなかった。									
	交配開始前までの雌	交配開始前までの雌親動物の性周期検査結果:								
	用量(mg/kg/day)	0	30	100	300					
**************************************	大學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學學	12 3.3±0.5 4.2±0.4	12 3.7±0.5 4.2±0.4	3.3 ± 0.5	12 3.5±0 4.2±0					
交尾前期間(交配までの日数及び 交配までの性周期回数)	注) 性周期回数, 性	周期日数:	平均値士	SD		•				
	交配開始から交尾成	立に関する	結果:							
	用量(mg/kg/day)	0	30	100	300					
	交配雌動物数 交尾成立雌動物数 交尾までの所要日数	12 12 3.3±3.4	12 12 3.3±1.2	12 12 2.7±2.0	12 12 3.7±1	.9				
	注)所要日数: 平均:	±SD								
	妊娠期間については 妊娠期間に関する結	妊娠期間については対照群と各投与群の間に有意な差は認められなかった。								
	一	 0	30	100	300	· -				
妊娠期間(妊娠0日から起算)	交配成立雌動物数 妊娠成立動物数	12 12	12 12	12 12	12 11					
	生児出産動物数 妊娠期間日数	12 22.2±0.4	12 22.3±0.5	12 21.9±0.5	11 22.3±	0.3				
	注)妊娠期間日数:	 平均±SD								
	分娩率(=100×[出生児数+死産児数]/[着床痕数])については対照群と各投与群の間に有意な差は認められなかった。									
	分娩率に関する結果 用量(mg/kg/day)	 0	30	100		 00				
妊娠指数(生存胎仔数/着床痕数)	一里 (IIIg/ kg/ day) 出産母動物数	 12	 12	12		 1				
<u>大流引级(工门加刊级/省外及级/</u>	着床痕総数 死産児総数	197 2	181	202 1	-	72				
	出生児総数分娩率(%)	179	161 90.5±1	185	1	64 95.7±3.5				
哺乳所見	授乳状態についてはた。									
性周期変動 精子所見	対照群及び各投与群 該当せず(測定未実)		変動の異常	は認めら	れなかっ	t				
作 厂川元	何れの検査項目にお	いても雌雄								
血液学的所見(発生率、重篤度)	群と各投与群との間(詳細: 反復投与毒性 を参照のこと。									

血液生化学的所見(発生率、重篤 度)	雄親動物: 投与期間認められたが、毒性症を伴わないことから偶素の有意な増加が認偶発的変化であると半値と無機リンの高値が判断された。 雌親動物: 投与期間に差は認められなから詳細: 反復投与毒性を参照のこと。	E状を象徴と 発いれたためられたたい 判断さらられたたい が認めらいました。 はいかによった。 はいない。 といない。 といる。 といる。 といる。 といる。 といる。 といる。 といる。 とい	であると であると が軽度な 。30mg/k _l たが投与 は何れの 試験(OEC	ではなく 別定され 変化であ g/day投 用量との 検査項 CD422)	く、且つ朝 た。同じ りり関連す は与群にな の関連が 目におい のため「!	経度な く300m - る変化 おいて 3 無いこ ・ ても対 5-5 反	変化で lg/kg/ck kを伴 fi fi fi fi fi fi fi fi fi fi fi fi fi	関連すり day投与 かな素の 尿の の な素の 各 と を と と と は と は に を 、 を 、 を 、 を 、 を 、 を と と と と を と を と を	る変化を発性のである。またの低という。またの低という。またのでは、またの
尿検査所見(発生率、重篤度)	尿検査は雄親動物の 目においても対照群と						目とも	何れの)検査項
死亡数(率)、死亡時間	雌雄親動物について						かった	- 0	
	投与期間終了時の雌雄 何れも発生頻度、病理等 見と判断された。 投与期間終了時の剖検	学的性状、	及び投与用 見動物数。 	量との	関連性が 加物数): 	認められ	hないこ 		
剖検所見(発生率、重篤度)		延 住弟	見動物 			雌親動 	初 		
	用量(mg/kg/day)	0	30	100	300	0	30	100	300
	肝の横隔膜へルニア結 肺の暗赤色巣 腺胃の暗赤色巣			0/12 0/12 0/12	0/7 0/7 0/7	0/12	0/12	0/12 0/12 4/12	0/12
着床数	着床数については対照 着床数に関する結果 一 用量(mg/kg/day) 一 妊娠成立動物数 着床数 注)着床数: 平均±8	0 12 16.4±1.2	30 12 15.1±	10 1 3.1 1	2 6.8±1.5	300		った。	
黄体数	黄体数については対算 黄体数に関する結果 用量(mg/kg/day) 妊娠成立動物数 黄体数	0	30	1(00	300		った。	
	注)黄体数: 平均±5	 SD (妊娠)	 式立動物数	 数ベ <i>ー</i> ス	 र)				
 未熟卵胞数	該当せず(測定未実施								
臓器重量	雄親動物: 投与期間 有意な低値が認められ 値(平均値:12.02~18 が、相対重量(平均値 体重;2006~2008年 との関連性が認められ ら、生理的変動範囲り 雌親動物: 投与期間 値が認められたが、軟 的組織検査で変化が 詳細: 反復投与毒性	終了時検 5.12g; 200 i: 2.60~2 i: 2.60~2 実施いこと 内の 所 が が は い に が の に は い の の に と と の の の に の の の の の の の の の の の の の	量(平均6 6~2008年 74g/100g 験)と同程 さらに組 考え、偶 300mg/kg であること	直:11.75 三実施のに 実重のは 度学の 受学変が で、 は は は は は は は は は は は は は は る の の の の の	3~12.54 ()6試験): は背景を は背景を を 化と判 にと 手 重 見と 明 の で が に が の で の が の で の の の の の の の の の の の の の	g)は記を若り(いっという)というではない。 を子りいることがあることがある。 関係できたいない。 関係がある。 はいないないない。 はいないないない。 はいないないない。 はいないないないない。 はいないないないない。 はいないないないないない。 はいないないないないないないない。 はいないないないないないないない。 はいないないないないないないないないない。 はいないないないないないないないないないないない。 はいないないないないないないないないないないないないないないないないないないな	t 験 国 発 い き に に に に に に に に に に に に に	施機関で8~2.88 3~2.88 元況におなかった 量の存む し、及び	の背景 あった g/100g 与用と ここ 意理 で で で が が が に が に が に が に が に が に が に が
	辞補: 及復牧子毎日 を参照のこと。	この所占	ロム河犬(OE(JU4ZZ) (シアニダブ	. J X1	皮仅分	毋(土)	ソタロ

	投与期間終了時の雌雄親動物の臓 められたが、何れも出現頻度、病理網				
	投与期間終了時の剖検所見(有所見	動物数/検査	動物数):		
		雄親動物		雌親動物	
	用量(mg/kg/day)	0 30	100 300	0 30	100 300
病理組織学的所見(発生率、重篤	心臓 限局性細胞浸潤(軽微) 腎臓 尿細管再生(軽微)	1/5 – 4/5 –	- 1/5 - 3/5	0/5 - 1/5 -	- 0/5 - 2/5
度)	腎臓 ヒアリン尿円柱(軽微) 腎臓 間質鉱質沈着(軽微)	1/5 - 0/5 -	- 0/5 - 0/5	0/5 - 1/5 -	- 0/5 - 0/5
	肝臓 横隔膜ヘルニア結節(軽度)	0/5 -	- 0/5	0/5 1/1	- 0/5
	肝臓 微小肉芽腫(軽微) 肺 動脈壁の鉱質沈着(軽微)	5/5 - 1/5 0/1	- 4/5 - 0/5	2/5 0/1 0/5 -	- 2/5 - 1/5
	肺 肺胞の出血(軽微)	1/5 1/1	- 0/5	0/5 -	- 1/5
	胃 腺胃の糜爛(軽微~軽度) 精巣 精巣管の萎縮(軽微)	0/5 - 1/5 -	- 0/5 - 0/5	4/6	4/4 1/5
	甲状腺 異所性胸腺組織(軽微)	1/5 -	- 0/5	0/5 -	- 0/5
	-1.1				
実際に摂取された量	該当せず 親動物の反復投与毒性につい	アルウ田県	· 200m = /le= /e	day (1) 211-+	いて批判動物の
用量反応性	体重に対する影響が認められ 被験物質の受胎能及び出生児	たが、本試馬	剣の全用量1	0,30,300n	ng/kg/dayにおいて
同腹仔数及び体重	同腹児数については対照群との児動物の体重についても対同腹児数及び腹児の体重に関ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	照群と各投生 する結果: 0 12 1.1±2.5 99.0±2.5 14.9±3.0 6.4±0.7 6.2±0.6	与群の間に 30 12 1.2±2.8 98.8±2.8 13.4±3.2 6.8±0.7 6.4±0.7	きは認められ 100 12 0.5±1.8 99.5±1.8 15.4±2.2 6.4±0.5 6.1±0.4	れなかった。 300 11 0.6±2.0 99.4±2.0 14.9±2.3 6.8±0.6 6.5±0.4
	出生児の性比については対照 出生児の性比に関する結果:	群と各投与	群の間に有:	意な差は認	められなかった。
	用量(mg/kg/day)	0	30	100	300
性比	生児出産母親数 生雄児数(生後0日目)	12 7.6±2.6	12 6.3±2.5	12 8.3±2.0	11 8.9±2.3
	生雌児数(生後0日目)	7.0 ± 2.0 7.3 ± 2.3		7.1 ± 1.9	
	全生児数(生後0日目)	14.9 ± 3.0	13.4±3.2	2 15.4±2.2	$2 14.9 \pm 2.3$
	性比(雄児数/全児数)	0.51 	0.47 	0.54 	0.60
	生児数:生児出産母親数べー	ースの平均±	:SD		

	生後4日目に に有意な差は				について	ては対照和	詳と各技	设与群 <i>0</i>	つ間に紡	計学的
	出生児の生存	字率に関す	る結果	ŧ:						
	用量(mg/kg/	 ′day)		0	3	30	100	3	00	-
生存率(生後4日目生存仔数/総分 娩仔数)	生児出産母報 全生児数(生 全生児数(生 出生児生後4	後0日目) 後4日目)	壑(%)	12 14.9± 13.4± 90.7=	±3.0 ±4.1	2 13.4±3.2 13.4±3.2 100.0±0	15.3	1±2.2 3±2.2	14.9± 14.8± 99.3±	2.4
	*:p<0.05 生児数: 生」 出生児4日目						平均士8	SD		
離乳までの分娩後生存率	該当せず(OE	CD422試	険のた	め腹児	生後4日	日目で試験	食終了)			
	出生時の児重かった。	動物の外表	観察に	こおいて	には、対	照群と各	投与群。			
	生後4日目の れたが、何れ ら偶発的変化	もラットでほと判断され	自然発	症する	ことが失	られてお	り、その	の発現数		
新生仔所見(肉眼的な異常)	生後4日目の 	出生児の 部	别検所 	見(有F 	听見動物 	勿数/検3 	查動物	数): 		
		林	! 			此 	推児 			
	用量(mg/kg/	day) 	0	30	100	300	0	30	100	300
	胸腺の頸部 腎盂拡張(両 			2/75 0/75		1/97 0/97	0/77 0/77		0/85 0/85	0/66 0/66
	出生時及び持められなかっ OECD422試馬 腹児の体重に	た。 倹のため生	後4日							差は認
	用量(mg/kg/	day)		0	3	30	100	3	00	
生後発育及び発育率	生児出産母親	見数		12		12	12		11	
	雄児の体重(雄児の体重(6.4± 9.7±		6.8±0.7 10.0±1.		±0.5 ±1.4	6.8±0. 9.9±1	
	雌児の体重(雌児の体重(6.2± 9.3±		6.4±0.7 9.6±1.6		±0.4 ±1.3	6.5±0. 9.4±1.	
	注)腹児の体	重: 生児	保育母	親数へ	ニスで	の平均土	SD			
膣開口又は精巣下降(包皮分離)	該当せず									
生殖器-肛門間距離などその他の 観察事項	該当せず									
臓器重量	該当せず(仔						/ -	E. 85.		
統計的結果	雄親動物の打 300mg/kg/da 影響と考えら 有意な差は、 見と判定され 受胎能及び出	y投与群に れた。その その発現の た。	おいて 他の か 性状	統計学 推雄親重 や頻度	学的に有動物の名 と用量 ^を	育意な低値 各投与群(相関性に	が認め こおいて 関する	られ、ご認めら	被験物質がた統分ののでは、	計学的に 発的所
注 如	影響と考えら							- ,-,,-		
注釈 結論	該当せず									

Pに対するNOAEL (NOEL)又は LOAEL (LOEL)	雄親動物に対する反復投与毒性: NOEL = 100mg/kg/day (LOEL = 300mg/kg/day) 雌親動物に対する反復投与毒性: NOEL = 300mg/kg/day (LOEL > 300mg/kg/day) 親動物(雌雄)に対する生殖発生毒性: NOEL = 300mg/kg/day (LOEL > 300mg/kg/day)
F1に対するNOAEL (NOEL)又は LOAEL (LOEL)	児動物(F1)に対して: NOEL = 300mg/kg/day (LOEL > 300mg/kg/day)
F2に対するNOAEL (NOEL)又は LOAEL (LOEL)	該当せず
注釈	試験実施機関: 株式会社ボゾリサーチセンター 御殿場研究所
信頼性	1 制限なく信頼性あり
信頼性の判断根拠	ガイドラインに従って実施されたGLP試験である。
出典	社内データ(専門機関への委託試験)
引用文献(元文献)	文献10
備考	本試験における被験物質の投与量は、株式会社クラレにて実施した7週齢のCrl:CD(SD)ラットを用いたIAAの14日間反復経口投与毒性試験(投与量:0, 15, 60, 250, 1000 mg/kg/day;各群雄3匹雌3匹)の結果をもとに設定した。この14日間投与試験においては、1000 mg/kg/day投与の雌雄で投与後の行動の沈静化がみられ、雌では投与6及び9日に各1例が死亡したが、雌雄生存例では器官重量、血液形態学的検査、血液生化学的検査における毒性学的な異常は認められなかった。また、250mg/kg/day以下の投与群では毒性的変化はみられなかった。以上の結果をもとに、14日間投与試験の致死量の約1/3に相当し、死亡の発現はないが反復投与による影響が生じる可能性が考えられる300mg/kg/dayを本試験の高用量とし、以下公比約3で除して100及び30 mg/kg/dayの3用量を本試験での投与量として設定した。

B. 発生毒性

B. 発生毒性	
試験物質名	3-メチルブタン-1-オール
CAS番号	CAS番号: 123-51-3
純度等	純度: 99.8%
	製造者: 株式会社クラレ
	Lot No.: 82934
注釈	不純物: 水 0.05%, 及び その他不明不純物(合計) 0.15%
方法	
方法/ガイドライン	OECD422
GLP適合	はい
試験を行った年	2008
試験系(種/系統)	Rat
	Crl: CD(SD)
性別	MF
投与量	0(媒体投与), 30, 100, 300 mg/kg/day
汉 プ里	
	0,300mg/kg/day群: 雄12匹(内5匹は回復群として使用),雌17匹(内5匹は非交配
各用量群(性別)の動物数	で回復群として使用)
合用里研(注例)の期初数	30, 100mg/kg/day群: 雄12匹, 雌12匹
	合計: 106匹
投与経路	強制経口投与
汉 子在哈	
등수 단수 廿미리티	雄親動物: 交配2週間前より42日間投与
試験期間	雌親動物: 交配2週間前より分娩4日までの41~53日間投与
交配前暴露期間	雄雌ともに14日間
	投与液量: 10mL/kg [媒体:1%Tween80を含む1%カルボキシメチルセルロースナ
	大学校里、Tomic/kg [妹体、1961Weenlooを含む1967が作名システルセルロース) トリウム(CMC-Na)水溶液]
	トリウム (OMO-Na) 小A 校」
	被験液(投与液)の被験物質濃度: 30mg/mL(300mg/kg/day投与群用)
	10mg/mL(100mg/kg/day投与群用)
	3mg/mL(30mg/kg/day投与群用)
	Sing/inL(Soing/kg/day技子作用)
	調剤頻度: 各被験液は7日間に1回の頻度で調製し、使用時まで褐色ガラス瓶に入
	前別領度、 各板駅間は7日間に1日の頻度で調要し、使用時まで梅巴ガラス間に入れて室温(実測値:16~22℃)で保存した。
試験条件	11 (主) (天) (10 22 0) (休付した。
	投与: 被験物質を0、30、100及び300mg/kg/dayの用量で、1群各12匹の雌雄のラッ
	トに、交配前14日間及び交配期間を通して剖検前日まで42日間、雌は交配前14日間
	及び交配期間並びに妊娠期間を通して分娩後授乳4日までの41~53日間経口投与
	した。Omg/kg/dayの用量群には媒体のみを同様に投与した。
	した。Olig/ Ng/ uayの用里付には外内のがと同門には大力した。
	交配条件: 交配期間中は1ケージ中に雄1匹と雌1匹を同居させた。
	父配条件: 父配朔间中は17一岁中に雄1世と雌1世を同居させた。 妊娠~出産・哺育までの条件: 妊娠17日~授乳4日までは1腹単位でケージに収容
	妊娠や山産・哺育よどの末件、妊娠17日や投孔4日よどは1腹単位とグークに収合した。
	O/20

対照群及び各投与群において親動物の死亡は認められなかった。	統計学的処理	間、黄体数、着(着体数、着(着体数、着(着体数、着(着体数、着(着体数)、機能液化体。 横進液化体。 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	数開及別 失母際川等でご準に 台、主を水に 大脚びり 本動にさ分検でののででです。本空存求だでは、大きのでは、いきのでは、いきでは、いきでは、ないがは、いきのでは、いきないがでは、いきがでは、ないがでは、いきがではいきがでは、いきがではないはいきがでは、いきがではいきがではないはいはないはいいはないいはいはないはいいはないはいいはないはいいはないはいいはい	数大力では、 数大力では、 大力で 大力で 大力で 大力で 大力で 大力で 大力で 大力で	フィー で で で で で で で で で で で で で	反応、接近反応、接触反応、 加数、雌を妊娠させた雄動物 雌生存児数、正常反射のみ x2検定を行った(有意水準 、みられる場合にはFisherの
妊娠成立動物数・率については対照群と各投与群の間に有意な差は認められながた。		ᆉᄱᄙᅷᅚᇧᄼᄼᇄᆮᅖ	ナノー ナンノン ア 立	まりぬのなか	は割められ	t>h> = t =
胚の吸収(損失)に関しては、着床前胚損失率及び着床後胚損失率を求めたところ対照群と各投与群の間に差は認められなかった。 胚の損失に関する結果: 用量(mg/kg/day) 0 30 100 300 妊娠成立動物数 12 12 12 11 黄体数 17.7±1.3 16.4±3.4 17.7±1.4 16.1±1.7 着床数 16.4±1.2 15.1±3.1 16.8±1.5 15.6±2.0 出産した生児数 14.9±3.0 13.4±3.2 15.4±2.2 14.9±2.3 着床前胚損失率(%) 6.9±6.3 8.0±9.9 4.7±4.7 3.0±3.5 着床後胚損失率(%) 9.7±15.7 10.6±11.0 8.3±11.4 4.9±4.3		妊娠成立動物数・率にた。 交配後の妊娠の結果 一量(mg/kg/day) 一交配雌動物数 交尾成立雌動物数 妊娠雌動物数	については 	対照群と各技 30 1 12 1 12 12 12 1	改与群の間に 00 30 12 12 12 1. 12 1.	- 有意な差は認められなかっ 00 2 2
対照群と各投与群の間に差は認められなかった。 胚の損失に関する結果: 用量 (mg/kg/day) 0 30 100 300 妊娠成立動物数 12 12 11 11	流産数	対照群及び各投与群	作において流	産は認めら	れなかった。	
着床数に関する結果:	早期/後期吸収数	対照群と各投与群の 胚の損失に関する結 用量(mg/kg/day) 妊娠成立動物数 黄体数 治床と生児数 着床した生児数 着床後胚損失率(%) 清床後胚損失率(%) 注)黄体数, 着床数, 着床前胚損失率=10	間に差は認 果: 0 12 17.7±1.3 16.4±1.2 14.9±3.0 6.9±6.3 9.7±15.7 出産した生 00×(黄体)	30 12 16.4±3.4 15.1±3.1 13.4±3.2 8.0±9.9 10.6±11 児数: 平均 数一着床数)	100 12 17.7±1.4 16.8±1.5 2 15.4±2. 4.7±4.7 .0 8.3±11. ±SD /(黄体数)	300 11 16.1±1.7 15.6±2.0 2 14.9±2.3 3.0±3.5 4 4.9±4.3
妊娠成立動物数 12 12 12 11 着床数 16.4±1.2 15.1±3.1 16.8±1.5 15.6±2.0	着床数	着床数に関する結果 用量(mg/kg/day) 一 妊娠成立動物数	0 12	30	100	300

	黄体数につい	ては対照群と各投	与群の間に有	意な差は認め	られなかった。
	黄体数に関す	る結果:			
黄体数	用量(mg/kg/c	lay) 0	30	100 30	00
	妊娠成立動物 黄体数	数 12 17.7±1.3	12 16.4±3.4	12 11 17.7±1.4 16	
	注)黄体数: 3	 平均±SD			
	妊娠期間につ	いては対照群と各	投与群の間に	有意な差は認	められなかった。
	妊娠期間に関	する結果:			
妊娠期間(妊娠0日から起算)	用量(mg/kg/c	lay) 0	30 100	300	
	生児出産動物 妊娠期間日数		12 12 22.3±0.5 21		±0.3
	注)妊娠期間日	日数: 平均±SD			
体重、体重増加量①	向が見られた (平均:121.0g) 施の6試験)を た。回復期間のの対照群を 重変化に関し 雌親動物:全	(39日目のみ統計:)は、試験実施機関下回るものであった 中では、300mg/kg, 上回る傾向を示しては被験物質によ	学的有意差あり 別のの背景値(たため、被験物 イロッ投与群のイ た。30及び100 る影響は認めり 重に関して、投	り)。同群の投 平均:132.8~ 平均:132.8~ 関質の投与の景 体重増加は統 mg/kg/day投 られなかった。	42日)の体重低値の傾 与期間中の体重低値の傾 157.6g:2006~2008年実 2響であると推察され 計学的有意差は無いも 与群の投与期間中の体 回復期間中とも被験物
		推親動物の体重の変 気のデータを抜粋:	化(平均±SD	[動物数])	
	時期	 媒体対照群	300mg/kg/da	 ay投与群	
	投与 1日目 15日目 29日目 39日目 42日目	369.1±11.8[12] 428.4±18.6[12] 480.4±19.5[12] 515.5±22.5[12] 513.6±23.0[12]	366.1±15.5[418.5±26.9[455.3±26.4[484.9±26.6[487.1±27.4[12] 12] 12]*	
体重、体重増加量②	投与期間中 増加量	144.5±14.3[12]	121.0±17.9[[12]*	
	回復 1日目 14日目	515.4±30.9[5] 534.8±37.1[5]	482.6±23.0[509.8±22.4[_	
	回復期間中 増加量	19.4±12.4[5]	27.2±6.3[5]	I	
		*: p < 0.05 なび300mg/kg/day投 あった(データ転記行		 推移は媒体対照	3群と
	雌親動物につい 略。	ては被験物質投与	の影響が認めら	れていないため	り体重データの転記を省
摂餌量、飲水量	摂餌量: 雄・島	こ。尚、300mg/kg/6 8日目に摂餌量の	day投与群のは	で投与39日目	皮験物質による影響は認 目に、100mg/kg/day投与 ↓変化であることから偶
		回復9~10日目間)			87~38日目間)と回復終 照群と各投与群の間に差

	300mg/kg/day投与群の雌 が、一過性の発現であり、こ ため偶発的変化と判定された。	の様な痙攣	地刺激に。 はラット ⁻	よる痙攣:で自然発:	が投与 症する	19日目	に1例。 知られ	みられた ている
臨床所見(重篤度、所見の発現時期 と持続時間)	ホームケージ内観察、手に持っての観察、オープンフィールド内観察、機能検査、握 カ測定においては、投与期間・回復期間中とも何れの親動物にも異常は認められな かった。							
	親動物の自発運動量の測定群の間に差は認められなか・		投与期間]中•回復	期間口	中とも対	対照群と	と各投与
血液学的所見(発生率、重篤度)	何れの検査項目においても 群と各投与群との間に被験物 詳細: 反復投与毒性との併 を参照のこと。	物質による影	影響と考え	えられる	きはな	かった	0	
血液生化学的所見(発生率、重篤 度)	雄親動物: 投与期間終了時認められたが、毒性症状を多を伴わないことから偶発的変素の有意な増加が認められてあると判断され値と無機リンの高値が認められずあるとればいる。	象徴する増加 を化であると たが軽度な れた。30mg/	ロではなく 判定され 変化であ kg/day投	、且つ軽 た。同じ り関連す ち群にお	度なす く300m る変化 いて	変化で g/kg/c 比を伴れ 有意は	関連す day投与 わない。 尿素窒	る変化 手群で塩 ことから E素の低
	雌親動物: 投与期間終了時に差は認められなかった。 詳細: 反復投与毒性との併を参照のこと。							
	投与期間終了時の雌雄親動物			の様な所見	₹₹			
	何れも発生頻度、病理学的性料 見と判断された。 投与期間終了時の剖検所見(オ				認めら ² 	れないこ 	ことから 	偶発的所
剖検所見(発生率、重篤度)	見と判断された。				認められ 雌親! 		ことから 	偶発的所
剖検所見(発生率、重篤度)	見と判断された。	有所見動物数 					ことから 100	偶発的所 300
剖検所見(発生率、重篤度)	見と判断された。 投与期間終了時の剖検所見(イーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	有所見動物数 雄親動物 0 30 0/7 0/12 0/7 1/12	《/検査動 	加物数): 	雌親! 0 0/12 0/12	動物 30 1/12 0/12		300 0/12 0/12
剖検所見(発生率、重篤度)	見と判断された。 投与期間終了時の剖検所見(オーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	有所見動物数 雄親動物 0 30 0/7 0/12 0/7 0/12 0/7 0/12 性併合試験 子宮量への影	100 2 0/12 2 0/12 2 0/12 2 0/12 (OECD4	が物数): 300 0/7 0/7 0/7 22)のたと	雌親! 0 0/12 0/12 4/12	動物 30 1/12 0/12 0/12 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100 0/12 0/12 4/12 ドライン	 300 0/12 0/12 1/12
副検所見(発生率、重篤度) 職器重量(総子宮量への影響)	見と判断された。 投与期間終了時の剖検所見(イー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	有所見動物数 雄親動物 0 30 0/7 0/12 0/7 0/12 0/7 0/12 0/7 0/12 せ併量 を検重量(平均 を検重量(平均 2006~2008 ~2.74g/100 6試と、さらに終	イ (グを 100 100 2 0/12 2 0/12 2 0/12 2 0/12 (OECD4 影響につった (ではますが、 ではまが、 ではますが、 ではまが、 ではまが、 ではまがまが、 ではまがではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまが、 ではまがはまが、 ではまがはまが、 ではまが、 ではまが、 ではまがはまが、 ではまが、 ではまがはまが、 ではまがはまがまが、 ではまがはまがではまがではながではながではながではながではながではながではながではながではながではな	加物数): 300 300 0/7 0/7 0/7 0/7 22) のたと いては検 のには 3~12.54 ひには はででで はた性である変	世親 0 0/12 0/12 4/12 か討 対は干均 がごれ がごれ がごれ がごれ がごれ がごれ がごれ がごれ	動物 30 1/12 0/12 0/12 ガか が験回 2.48 がよい。 がいました。 がいました。 がいました。 がいました。 がいました。 がいました。 1/12	100 0/12 0/12 4/12 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 300 0/12 0/12 1/12 1/12 にお背ま のあまた 8g/100g と与用量
	見と判断された。 投与期間終了時の剖検所見(名 用量(mg/kg/day) 一所の横隔膜へルニア結節 肺の暗赤色巣 下の横隔膜へルニア結節 肺の暗赤色巣 で復投与毒性・生殖発生毒性 重量については次の通りでも 雄親動物: 投与期間終了時 有意な低値が認められ、絶対 値(平均値:12.02~15.12g; 2 が、相対重量(平均値:2.60~ 体重; 2006~2008年実施の との関連性が認められないる	有所見動物数 雄親動物 0 30 0/7 0/12 0/7 0/12 0/7 0/12 0/7 0/12 0/7 0/12 性宮る 査量へで、平03 を検重量へ2008 2006~2008 21試と、考のののののでで、第一のののののででである。これに、個別では、一般では、一般では、一般では、一般では、一般では、一般では、一般では、一般	が が が が が が が が が が が が が が	加物数): 300 0/7 0/7 0/7 0/7 0/7 22) のは 間3~試景ので判 のは、 12.54 のは、 のは、 のは、 のは、 のは、 のは、 のは、 のは、	世親 0 0/12 0/12 4/12 か討 対は干均 に化れ 野化がた	- 動 30 1/12 0/12 0/12 が験回 2現れ が験回 2.48状れ 重る 48状れ 重る 48状れ 重る 48状れ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	100 0/12 0/12 4/12 ドライン他 重関で 3~2.88 なかった 量のする	 300 0/12 0/12 1/12 たのあますってのある。 Bg/100g量かに 意とって 意とって である。 である。 である。 である。 である。 である。 である。 である。

	投与期間終了時の雌雄親動物の臓	器の病理網	組織学的検	査におい	いて下表の	の様な	所見·発	生頻度が認
	められたが、何れも出現頻度、病理が与期間終了時の割捨所見(方形				と判断さ	れた。		
	投与期間終了時の剖検所見(有所見 	起動物致之 雄親動物	 雌親動					
	用量(mg/kg/day)	0 3	30 100	300	0	30	100	300
病理組織学的所見(発生率、重篤 度)	心臓 限局性細胞浸潤(軽微) 腎臓 尿細管再生(軽微)	1/5 - 4/5 -	 	1/5 3/5	0/5 1/5	- - -	- - -	0/5 2/5
(文)	腎臓 ヒアリン尿円柱(軽微) 腎臓 間質鉱質沈着(軽微)	1/5 - 0/5 -		0/5 0/5	0/5 1/5	- -	-	0/5 0/5
	肝臓 横隔膜ヘルニア結節(軽度) 肝臓 微小肉芽腫(軽微)		- 	0/5 4/5	0/5 2/5	1/1 0/1	_	0/5 2/5
	肺 動脈壁の鉱質沈着(軽微) 肺 肺胞の出血(軽微)	1/5 0, 1/5 1/		0/5 0/5	0/5 0/5	- -	_	1/5 1/5
	胃 腺胃の糜爛(軽微~軽度) 精巣 精巣管の萎縮(軽微)	0/5 - 1/5 -		0/5 0/5	4/6 -	_	4/4 -	1/5 -
	甲状腺 異所性胸腺組織(軽微)	1/5 -	- <u>-</u> 	0/5	0/5	-	_ 	0/5
	同腹児数については対照群との児動物の体重についても対 同腹児数及び腹児の体重に同	関する結	各投与群 <i>0</i> 果∶ 		差は認る	められ 	.なかっ 	
	用量(mg/kg/day) 	0 	30		100		300 	
同腹仔数及び体重	生児出産母親数 死産率(%)	12 1.1±2.5	12 5 1 <i>2</i> -	±2.8	12 0.5±1	8	11 0.6±2	0
	生児出生率(%)	99.0±2	2.5 98.8	3 ± 2.8	99.5∃	±1.8	99.4±	2.0
	出産された生児数 雄児の体重(g;生後0日目)	14.9± 6.4±0		4±3.2 3±0.7	15.4: 6.4:	±2.2 ±0.5		
	雌児の体重(g;生後0日目)	6.2±0	0.6 6.4	\$±0.7	6.1=	±0.4	6.5±	0.4
	注)死産率,生産率,生児数,							
生存数(生存胎仔数及び胎仔数)	上記「同腹仔数及び体重」の」 は媒体対照群と被験物質投	項に記載 辞の間	したデータに有意な	g の通 差 は認	J、出生 められ	日の なかっ	生存児 った。	数について
	出生児の性比については対照 出生児の性比に関する結果:		役与群の間	間に有意	意な差	は認め	かられた	なかった。
			20		100		200	_
ibit- Lic	用量 (mg/kg/day) 	0	30		100		300 	-
性比	生児出産母親数 生雄児数(生後0日目)	12 7.6±2			12 8.3±	2.0		2.3
	生雌児数(生後0日目) 全生児数(生後0日目)	7.3±2 14.9±			7.1± 2 15.4			
	性比(雄児数/全児数)	0.51		7	0.54		0.60	<u> 2.0</u>
	生児数: 生児出産母親数べ	 スの平	均±SD					_
	生後4日目における出生児のに有意な差は認められなかっ		ついては	対照郡	半と各投	与群	の間に	統計学的
	出生児の生存率に関する結果	是 :						
	用量(mg/kg/day)	0	30		100		300	
生存率(生後4日目生存仔数/総分 娩仔数)	生児出産母親数	12	12		12		11	
77B13 7 A/	全生児数(生後0日目) 全生児数(生後4日目)		3.0 13.4 4.1 13.4					
	出生児生後4日目生存率(%)							
	*:p<0.05 生児数: 生児出産母親数べ出生児4日目生存率(%): 生			-スの平	ヹ り±S	SD.		

	出生時及び授乳4日 められなかった。 OECD422試験のため								差は認
	腹児の体重に関する	結果:							
	用量(mg/kg/day)		0	;	30	100	3	00	_
生後発育	生児出産母親数		12		12	12		11	
	雄児の体重(g;生後の 雄児の体重(g;生後の		6.4± 9.7±		6.8±0.7 10.0±1			6.8±0. 9.9±1	
	雌児の体重(g;生後の 雌児の体重(g;生後の		6.2± 9.3±		6.4±0.7 9.6±1.6			6.5±0. 9.4±1.	
	注)腹児の体重: 生	児保育母	:親数べ	ースで	の平均±	:SD			-
分娩後生存率	OECD422試験のため 上記「生存率(生後4」 被験物質投与群の間	日目生存	仔数/約	8分娩(子数)」の				
	出生時の児動物の外 かった。	·表観察に	こおいて	は、対	照群と各	投与群。	とも、異	常は認	められな
	生後4日目の出生児のれたが、何れもラットら偶発的変化と判断。	で自然発							
 肉眼的異常(外表観察、内臓標本、 骨格標本)	生後4日目の出生児(の剖検所	見(有所	f見動物 	物数/検:	查動物数 	数): 		
	雄児								
	用量(mg/kg/day)	0	30	100	300	0	30	100	300
	胸腺の頸部残留 腎盂拡張(両側性)		2/75 0/75		1/97 0/97	0/77 0/77		0/85 0/85	0/66 0/66
 実際に投与された量		実際に投	与され,†	-量)					
用量反応性	雄親動物の一般毒性 300mg/kg/dayのみで では無影響であった。 であった。	(反復投 被験物質	与毒性)に関す	(観察され	、30及7	 100m	g/kg/da	ayの用量 :も無影響
	発生及び出生児に関 た。	する項目	では、3	30, 100), 300mg/	′kg∕day	の用量	とも無景	/響であっ
統計的結果	雄親動物の投与期間 300mg/kg/day投与期 影響と考えられた。そ 有意な差は、その発見 見と判定された。	においての他の此	統計学 推雄親重	的に有物の名	可意な低値 各投与群	直が認め こおいて	られ、 認めら	被験物質	計学的に
	発生及び出生児に関響と考えられる統計等						間に被	験物質	こよる影
注釈 結論	<mark>該当せず</mark>								
暗詞 Pに対するNOAEL (NOEL)又は LOAEL (LOEL)	雄親動物に対する反復 雌親動物に対する反復	投与毒性	: NOEL	_ = 30	0mg/kg/da	ay (LOE	L > 30	00mg/kg	/day)
F1に対するNOAEL (NOEL)又は	親動物(雌雄)に対する 児動物(F1)に対して								
LOAEL (LOEL) F2に対するNOAEL (NOEL)又は LOAEL (LOEL)	該当せず								
注釈	試験実施機関: 株式		ブリサー	チセン	ター 御原	设場研究	了所		
信頼性 信頼性の判断根拠	1 制限なく信頼性あ		t-CI D=	お除で	ホス				
	アンコーンコンに1年7日	大心で化	LULP	ハ河犬 じん	ω° (Δ, (K				

出典	社内データ(専門機関への委託試験)
引用文献(元文献)	文献10
備考	本試験における被験物質の投与量は、株式会社クラレにて実施した7週齢のCrl:CD(SD)ラットを用いたIAAの14日間反復経口投与毒性試験(投与量:0,15,60,250,1000 mg/kg/day;各群雄3匹雌3匹)の結果をもとに設定した。この14日間投与試験においては、1000 mg/kg/day投与の雌雄で投与後の行動の沈静化がみられ、雌では投与6及び9日に各1例が死亡したが、雌雄生存例では器官重量、血液形態学的検査、血液生化学的検査における毒性学的な異常は認められなかった。また、250mg/kg/day以下の投与群では毒性的変化はみられなかった。以上の結果をもとに、14日間投与試験の致死量の約1/3に相当し、死亡の発現はないが反復投与による影響が生じる可能性が考えられる300mg/kg/dayを本試験の高用量とし、以下公比約3で除して100及び30 mg/kg/dayの3用量を本試験での投与量として設定した。

5-10その他関連情報

5-11 ヒト暴露の経験

6 参考文献(以下に欄を追加の上、一文献について一行にて一覧を記載)

文献番号(半角数字:自 動的に半角になります)	詳 細(OECD方式での記入をお願いします。下の記入例参照。)	日本語の場合、以下の欄にお願いします。
1	Smyth, HF, JR, Carpenter, CP, Weil, CS, Pozzani, UP, Striegel, JA, and Nucum JS, 1969 "Range-Finding Toxicity Data: List VII", American Industrial Hygiene Association Journal, 30, 470-476, 1969.	
2	Smyth, HF, JR, Carpenter, CP, Weil, CS, Pozzani, UP, and Striegel, JA, 1962 "Range-Finding Toxicity Data: List VI", American Industrial Hygiene Association Journal, 23, 95–107, 1962.	
3		食品薬品安全センター秦野研究所, 平成15年度国際的に 汎用されている添加物(香料)の指定に向けた試験 イソア ミルアルコールの細菌を用いる復帰突然変異試験, 試験計 画番号M-03-106, 2004
4		食品薬品安全センター秦野研究所,平成15年度国際的に汎用されている添加物(香料)の指定に向けた試験 イソアミルアルコールのチャイニーズ・ハムスター培養細胞を用いる染色体異常試験,試験計画番号G-03-078, 2004
5		食品薬品安全センター秦野研究所,平成15年度国際的に 汎用されている添加物(香料)の指定に向けた試験 イソア ミルアルコールのマウスを用いる小核試験, 試験計画番号 G-03-083, 2004
6		化学物質評価研究機構、IAAの微生物による分解度試験、 試験番号:15008, 2008
7		化学物質評価研究機構, IAAのヒメダカによる96時間急性 毒性試験, 試験番号:94420, 2008
8		化学物質評価研究機構,IAAのオオミジンコによる48時間 急性遊泳阻害試験,試験番号:94419, 2008
9		化学物質評価研究機構,IAAのPseudokirchneriella subcapitataによる藻類生長阻害試験,試験番号:94418, 2008
10		ボゾリサーチセンター, IAAのラットを用いた経口投与による反復投与毒性・生殖発生毒性併合試験, 試験番号:R-988, 2008