
最終報告書

エチルフェノール [p-エチルフェノール (被験物質番号 K-1140) にて試験実施] の微生物による分解度試験

陳 述 書

財団法人 イヒ 学 品 検 査 協 会 化学品安全センター久留米研究所

試験委託者 通商産業省

試験の表題 エチルフェノール [p-エチルフェノール (被験物質番号 K-1140) にて試験実施] の微生物による分解度試験

試験番号 21140

上記試験は、「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」(環保業第39号、薬発第229号、59基局第85号、昭和59年3月31日、昭和63年11月18日改正)に定める「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設に関する基準」及び「OECD Principles of Good Laboratory Practice」(May 12, 1981)に従って実施したものです。

平成 6年10月12日

運営管理者

信賴性保証書

財団法人 イヒ 学 品 検 査 協 会 化学品安全センター久留米研究所

試験委託者 通商産業省

試験の表題 エチルフェノール [p-エチルフェノール (被験物質番号

K-1140)にて試験実施]の微生物による分解度試験

試験番号 21140

上記試験は財団法人化学品検査協会化学品安全センター久留米研究所の信頼性保証部門が監査及び査察を実施しており、監査又は査察を行った日付並びに運営管理者及び試験責任者に報告を行った日付は以下の通りです。

Ę	を 査又に	查察	3	報台	日(道	営管理	里者)	報台	· 日(記	験責 任	[者)
平成	6年	7月	5日	平成	6年	7月	5日	平成	6年	7月	5 ⊞
平成	6年	7月	7日	平成	6年	7月	8 ⊟	平成	6 年	7月	7日
平成	6年	7月2	21日	平成	6年	7月2	21日	平成	6年	7月2	1日
平成	6年1	0月	12日	平成	6年1	0月1	2日	平成	6年1	0月1	2日

本最終報告書は、試験の方法が正確に記載されており、内容が試験計画及び標準操作手順に従い、かつ、生データを正確に反映していることを保証します。

平成 6年/0月/2日 信頼性保証業務責任者

目 次

			頁
	要 約		1
1.	表 題		2
2.	試験委託者		2
3.	試 験 施 設		2
4.	試験目的		2
5.	試験方法		2
6.	優良試験所基	準への適合	2
7.	試験期間		3
8.	試験関係者		3
9.	最終報告書作	成日	3
10.	最終報告書の	承認	3
11.	被験物質		4
12.	活性汚泥の調	製	5
13.	分解度試験の	実施	7
14.	試験条件の確	認	1 4
15.	試験結果		1 4
16.	試資料の保管		1 7
17.	備考		1 7
18.	表及び図の内	容	1 8
	付表及び付図		

要 約

1. 試験の表題

エチルフェノール [p-エチルフェノール(被験物質番号 K-1140)にて 試験実施]の微生物による分解度試験

2. 分解度試験

2.1 試験条件

- (1) 被験物質濃度 100 mg/L
- (2) 活性汚泥濃度 3 0 mg/L (懸濁物質濃度として)
- (3) 試験液量 300 mL
- (4) 試験液培養温度 25±1℃
- (5) 試験液培養期間 14日間

2.2 測定及び分析

- (1) 閉鎖系酸素消費量測定装置による生物化学的酸素要求量(BOD)の測定
- (2) 全有機炭素分析法(TOC)による溶存有機炭素の分析
- (3) 高速液体クロマトグラフィー (HPLC) による被験物質の分析

3. 試験結果

- (1) BODによる分解度 90%, 89%, 90%
- (2) TOCによる分解度 100%, 98%, 99%
- (3) HPLCによる分解度 100%, 100%, 100%

4. 被験物質の安定性

被験物質は保管条件下で安定であることを確認した。

最終報告書

試験番号 21140

1. 表 題 エチルフェノール [p-エチルフェノール (被験物質番号 K-1140) にて試験実施] の微生物による分解度試験

2. 試験委託者 名 称 通商産業省

住 所 (〒100)東京都千代田区霞が関一丁目3番1号

3. 試 験 施 設 名 称 財団法人 化学品検査協会 化学品安全センター久留米研究所

住 所 (〒830)福岡県久留米市中央町19-14

TEL (0942) 34-1500

運営管理者

4. 試 験 目 的 K-1140の微生物による分解性の程度について知見を得る。

5. 試験方法 「新規化学物質に係る試験の方法について」(環保業第5号、 薬発第615号、49基局第392号、昭和49年7月13日)に規定する 〈微生物等による化学物質の分解度試験〉及び「OECD

Guidelines for Testing of Chemicals 」(July 17, 1992) に 定める "Ready Biodegradability: 301C, Modified MITI Test

(I)"に準拠した。

6. 優良試験所基準への適合

「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」(環保業第39号、薬発第229号、59基局第85号、昭和59年3月31日、昭和63年11月18日改正)に定める「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設に関する基準」(以下「GLP基準」という。)及び「OECD Principles of Good Laboratory Practice」(May 12, 1981)に適合して行った。

7. 試験期間

- (1) 試 験 開 始 日 平成 6年 7月 5日
- (2) 試験液培養開始日 平成 6年 7月 7日
- (3) 試験液培養終了日 平成 6年 7月21日
- (4) 試験終了日 平成 6年 9月26日
- 8. 試験関係者

試 験 責 任 者

試験担当者

活性污泥管理責任者

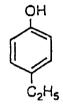
試資料管理部門責任者

9. 最終報告書作成日

平成 6年 9月26日作成者

10. 最終報告書の承認

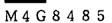
試 験 責 任 者


平成 6年 ⁹月 26日 氏 名

11. 被験物質

本報告書においてK-1140は、次の名称及び構造式等を有するものとする。

- 11.1 名 称 p-エチルフェノール
- 11.2 構造式等


構造式

分子式 C.H.。O

分子量 122.17

- 11.3 純 度*1 98.9%
- 11.4 入手先、商品名、等級及びロット番号*1
 - (1) 入 手 先
 - (2) 商 品 名
 - (3) 等級
 - (4) ロット番号

*1 入手先添付資料による。

11.5 被験物質の確認

赤外吸収スペクトル(図-5参照)、質量スペクトル(図-6参照)及び核磁気共鳴スペクトル(図-7参照)により構造を確認した。

- 11.6 保管条件及び保管条件下での安定性
 - (1) 保管条件

冷暗所

(2) 安定性確認

試験液培養開始前及び培養終了後に被験物質の赤外吸収 スペクトルを測定し、両スペクトルが一致することから、 保管条件下で安定であることを確認した(図-5参照)。

12. 活性汚泥の調製

- 12.1 汚泥の採集場所及び時期
 - (1) 場 所 以下の10ヵ所から採集した。

伏古川処理場(北海道札幌市) 中浜処理場(大阪府大阪市) 北上川(宮城県石巻市) 吉野川(徳島県徳島市) 広島湾(広島県広島市)

深芝処理場(茨城県鹿島郡) 落合処理場(東京都新宿区) 信濃川(新潟県西蒲原郡) 琵琶湖(滋賀県大津市) 桐海湾(福岡県北九州市)

(2) 時 期 平成 6年 3月

12.2 採集方法

- (1) 都 市 下 水 下水処理場の返送汚泥
- (2) 河川、湖沼及び海 表層水及び大気と接触している波打際の表土

12.3 新旧汚泥の混合

前記で採集してきた各地の汚泥のろ液をそれぞれ500mLと、それまで試験に供していた旧活性汚泥のろ液 5 L とを混合して10 L とし、p H を 7.0 ± 1.0 に調整して培養槽でばっ気* 2 した。

*2 ばっ気

屋外空気をプレフィルターに通し、ばっ気に用いた。

12.4 培 養

培養槽へのばっ気を約30分間止めた後、全量の約1/3量の上澄液を除去した。 これと等量の脱塩素水を加えて再びばっ気し、上澄交換液部の濃度が0.1%に なるように合成下水・3を加えた。この操作を毎日1回繰り返し、培養して活性 汚泥とした。培養温度は25±2℃とした。

*3 合成下水

グルコース、ペプトン、りん酸一カリウムをそれぞれ5(V/V)%になるように脱塩素水に溶解し、水酸化ナトリウムでpHを 7.0 ± 1.0 に調整したものを用いた。

12.5 管理及び使用

:

培養中、上澄液の外観及び活性汚泥の生成状態を観察するとともに、活性汚泥の沈でん性、pH、温度及び溶存酸素濃度を測定し記録した。活性汚泥の生物相は適宜光学顕微鏡を用いて観察し、異常のないことを確認した上で試験に供した。

12.6 活性汚泥の活性度の点検及び使用開始日

(1) 活性汚泥の活性度の点検

標準物質を用いて活性汚泥使用開始前に活性度を点検した。また、旧活性 汚泥との関連性に留意した。

(2) 活性污泥使用開始日 平成 6年 4月12日

13. 分解度試験の実施

13.1 試験の準備

(1) 活性汚泥の懸濁物質濃度の測定

測 定 方 法 「工場排水試験方法, 懸濁物質」 (JIS K 0102-1986 の 14.1) に準じて行った。

測定実施日 平成 6年 7月 4日

測 定 結 果 活性汚泥の懸濁物質濃度は5500mg/Lであった。

(2) 基礎培養基の調製

「工場排水試験方法,生物化学的酸素消費量」(JIS K 0102-1986 の 21.) で定められたA液、B液、C液及びD液それぞれ3mLに精製水(高杉製薬製 日本薬局方)を加えて1Lとする割合で混合し、pHを7.0に調整した。

(3) 基準物質

3

アニリン(昭和化学製 試薬特級 ロット番号 SE-2823)を用いた。

13.2 試験液の調製

試験容器を6個用意し、試験液を下記の方法で調製した。これらの試験液について、13.3の条件で培養を行った。

- (1) 被験物質及びアニリンの添加
 - (a) (水+被験物質)系(1個,試験容器2)

試験容器に精製水300mlを入れ、被験物質が100mg/Lになるように電子分析天びんで30mgを精密にはかりとり、添加後1時間撹拌してpHを測定した。

(b) (汚泥+被験物質)系(3個,試験容器345) 試験容器に基礎接着其300mlを入れ、被除物質が

試験容器に基礎培養基300mLを入れ、被験物質が100mg/Lになるように電子分析天びんで30mgを精密にはかりとり、添加後1時間撹拌してpHを測定した。

(c) (汚泥+アニリン)系(1個,試験容器①)

試験容器に基礎培養基300mLを入れ、アニリンを100mg/Lになるようにマイクロシリンジで29.5 μ L[添加量30mg=29.5 μ L×1.022g/cm³(密度)]分取して添加した。

- (d) 汚泥ブランク系(1個,試験容器⑥) 試験容器に基礎培養基300mLを入れた。
- (2) 活性汚泥の接種

(b), (c)及び(d)の試験液に12. の条件で調製した活性汚泥を懸濁物質濃度として30 ng/Lになるように接種した。

- 13.3 試験液培養装置及び環境条件
 - (1) 試験液培養装置

閉鎖系酸素消費量測定装置(大 倉 電 気 製 クーロメーター)

(旭計器工業製 データ処理装置)

試験容器 300 配用培養ビン

炭酸ガス吸収剤 ソーダライム、No.1 (和光純薬工業製 試薬一級)

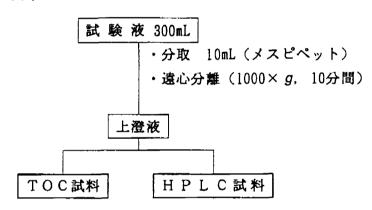
撹 拌 方 法 マグネチックスターラーによる回転撹拌

(2) 環境条件

試験液培養温度 25±1℃

試験液培養期間 14日間

実 施 場 所 511クーロ室


13.4 試験液の分析

培養期間終了後、試験液中に残留している溶存有機炭素及び被験物質を分析した。なお、(水+被験物質)系及び(汚泥+被験物質)系の試験液のpHを測定した。

13.4.1 試験液の前処理

試験液培養期間終了後、(水+被験物質)系、(汚泥+被験物質)系及び 汚泥プランク系の試験液について以下のフロースキームに従って前処理操作を 行い、溶存有機炭素(DOC)を分析するための全有機炭素分析法(TOC) 試料とし、被験物質を分析するための高速液体クロマトグラフィー(HPLC) 試料とした。

フロースキーム

13.4.2 定量分析

(1) 全有機炭素分析法による溶存有機炭素の分析

前処理を行って得られたTOC試料について下記の定量条件に基づき DOCを分析した。

試験液のDOC濃度は、全有機炭素計内のデータ処理装置により、TOC 標準溶液80.0mgC/Lのピーク面積を測定して検量線を設定し、TOC試料の DOCを測定して求めた(表-2参照)。なお、TOC標準溶液はフタル酸 水素カリウム(和光純薬工業製 試薬特級)を精製水に溶解して調製した。

定量下限濃度は、溶存有機炭素濃度1.0mgC/Lとした。

定量条件

機				器	全有機炭素計	
					島津製作所製	T O C - 5 0 0 0
T	С	炉	温	度	680℃	
流				量	150 mL/min	
注		入		量	3 3 µ L	
感				度	レンジ 5	

(2) 高速液体クロマトグラフィーによる被験物質の分析

前処理を行って得られたHPLC試料について下記の定量条件に基づき被験物質を分析した。HPLC試料中の被験物質の濃度はクロマトグラム上で得られた標準溶液120mg/Lのピーク面積とHPLC試料のピーク面積とを比較し、比例計算して求めた(表-3、図-2参照)。

ピーク面積の検出下限は、ノイズレベルを考慮して $19000\,\mu\,V$ ・sec (被験物質濃度 $3.6\,mg/L$) とした。

(a) 定量条件

機		器	高速液体クロマトグラフ
	ポン	プ	島津製作所製 LC-6A
	検 出	器	島津製作所製 SPD-6A
カ	ラ	٨	L-column ODS
			15cm×4.6mmφ ステンレス製
溶	離	液	アセトニトリル/水**(8/2 V/V)
流		量	1. Oml/min
測	定 波	長	277nm (図-4参照)
注	入	量	1 0 μ L
感		度	
	検 出	器	O. 8 V/ABU
	記録	計	レンジ 150mV

*4 水道水をミリーXQを用いて処理した水。

(b) 標準溶液の調製

分析試料中の被験物質濃度を求めるための標準溶液の調製は次のように 行った。

被験物質 $100\,\mathrm{mg}$ を精密にはかりとり、アセトニトリル/精製水($5/95\,\mathrm{V/V}$)に溶解して $1000\,\mathrm{mg/L}$ の標準原液を調製した。これを精製水で希釈して $120\,\mathrm{mg/L}$ の標準溶液とした。

(c) 検量線の作成

ţ

(b)の標準溶液の調製と同様にして30.0、60.0及び120mg/Lの標準溶液を調製した。これらを(a)の定量条件に従って分析し、得られたそれぞれのクロマトグラム上のピーク面積と濃度により検量線を作成した(図-3 参照)。

13.5 分解度の算出

被験物質の分解度は下記の式に基づき算出し、小数点以下1ケタ目を丸めて 整数位で表示した。

(1) BODによる分解度

分解度 (%) =
$$\frac{BOD - B}{TOD} \times 100$$

BOD : (汚泥+被験物質)系の生物化学的酸素要求量

(測定値) (mg)

B: 汚泥プランク系の生物化学的酸素要求量

(測定値)(mg)

TOD*6: 被験物質が完全に酸化された場合に必要とされる

理論的酸素要求量(計算值)(mg)

*5 TODは純度100%として算出した。

(2) TOCによる分解度

分解度 (%) =
$$\frac{DOC_w - DOC_s}{DOC_w} \times 100$$

DOCs: (汚泥+被験物質)系における溶存有機炭素の残留量

(測定値) (mgC)

DOCw: (水+被験物質)系における溶存有機炭素の残留量

(測定値) (mgC)

(3) HPLCによる分解度^{*6}

S。 : (汚泥+被験物質)系における被験物質の残留量

(測定値) (mg)

Sw: (水+被験物質)系における被験物質の残留量

(測定値) (mg)

*6 HPLCによる分解度の算出は、13.4.2での分析においてピーク面積 が検出下限を越えなかったので、残留量を0として計算した。

13.6 数値の取扱い

数値の丸め方は、JIS Z 8202-1985 参考3 規則B に従った。

14. 試験条件の確認

BODから求めたアニリンの7日及び14日後の分解度はそれぞれ65%及び77%であることから、本試験の試験条件が有効であることを確認した(表-1、図-1 参照)。

15. 試験結果

15.1 試験液の状況

試験液の状況は下記のとおりであった。

	試験液	状 况	рН
培養開始時	(水 +被験物質)系	不溶物は認められなかった。	2 7.2
	(汚泥+被験物質)系	不溶物は認められなかった。	3 7.0 4 7.0 5 7.0
培養終了時	(水 +被験物質)系	不溶物は認められなかった。	2 7.0
可贷於」时	(汚泥+被験物質)系	汚泥の増殖が認められた。	3 6.8 4 6.9 5 6.8

15.2 試験液の分析結果 14日後の分析結果は下記のとおりであった。

				(水+強験 物質)系	(汚泥	+被験物	質)系	理論量	付	表	付 図]
				2	[3]	4	5					
В	0	D D	(mg)	0. 0	70. 8	70.0	70. 6	78. 6	表-	· 1	図-1	
n	DOC残留		(mgC)	22. 9	0. 1	0.4	0. 2	23. 6	+	0		
יט			(%)	97	0	2	1	_	表-	. 2	_	
Auto Si	A 54- FF	rete Gu	(mg)	28. 8	0. 0	0. 0	0. 0	30	-	0		
İ	食物質: HPL		(%)	96	0	0	0	_	表-	. ე	図-2	

- *7 (汚泥+被験物質)系は、汚泥ブランク系の値を差し引いて表示した。
- *8 残留率(%)は以下の式に基づき算出し、小数点以下1ケタを丸めて整数位で表示した。

15.3 分解度試験結果

14日後の分解度は下記のとおりであった。

	分 解 度 (%)				
	3	4	5	付 表	
BODによる結果	9 0	8 9	9 0	表-1	
TOCによる結果	100	9 8	9 9	表 2	
HPLCによる結果	100	100	1 0 0	表-3	

15.4 考 察

p-エチルフェノール以外の位置異性体の生分解性について .

エチルフェノールの位置異性体(ゥーエチルフェノール、mーエチルフェノール)を用い、置換位置の分解度に及ぼす影響を検討した。これらの位置異性体について、開放系試験を実施し、TOC及びHPLC分析を行った。試験条件及び分析結果は下記に示すとおりであった。

		-	試験条件			分析	結果			
102	△ Ibán &	構 造 式	試料	汚泥	期間		残留率	(%)	分解度	
化合物名	3 初 名	神 垣 八	(mg/L)	(mg/L)	(W)		(水+被験 物質)系	(汚屍+被験 物質)系	(%)	
0 -	エチル	OH C₂H₅	100	30	4	TOC	94, 96	1, 3	99, 97	
フェ	ノール		100			HPLC	95, 98	0. 0	100, 100	
m-	エチル	}-♀	100		q	тос	94, 94	3, 4	97, 96	
フェノール	C ₂ H ₅	100	30	2	HPLC	99, 99	0, 0	100, 100		

以上の結果より、これらの位置異性体においては分解度に差が見られなかった。

16. 試資料の保管

16.1 被験物質

保管用被験物質約5gを保管用容器に入れ密栓後、「GLP基準」第32条に 定める期間、当研究所試料保管室に保管する。

16.2 生データ、資料等

試験により得られた分析結果、測定結果、観察結果、その他試験ノート等 最終報告書の作成に用いた生データ、試験計画書、指示書、資料等は 最終報告書と共に、「GLP基準」第32条に定める期間、当研究所資料保管室 に保管する。

17. 備 考

17.1 試験に使用した主要な装置・機器

閉鎖系酸素消費量測定装置 : 8頁参照

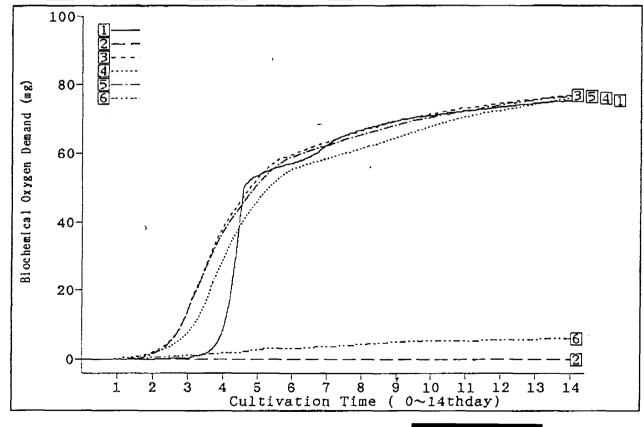
全有機炭素計 : 10頁参照

高速液体クロマトグラフ : 11頁参照

天 び ん : Sartorius社製 2007 MP6

p H 計 : 東亜電波工業製 HM-50S .

遠心分離機 : 日立工機製 05 P R - 2


17.2 試験に使用した試薬

アセトニトリル : 和光純薬工業製 HPLC用

Fig.1	Chart	of	BOD
1 7 5 . 7	Chart	0.1	מטע

Test No.	21140 (Test substance _	K-1140)
Apparatus		No. CM-6	
Concentr Test s Refere Activa Temperat Duration	ag conditions: ration substance	100 (mg/0) 100 (mg/0) 30 (mg/0) 25 ± 1°C 14days(Jul.7~Jul.21,1994	1)

		B O D (mg)				
Vessel no.	Sample description	7thday	14thday			
1	Sludge + Aniline	62.8	75.5			
2	Water + Test substance	0.0	0.0			
[3]	Sludge + Test substance	63.3	76.9			
4	Sludge + Test substance	58.8	76.1			
5	Sludge + Test substance	62.5	76.7			
6	Control blank [B]	3.8	6.1			

1994.07.21 Name