最終報告書

1,8-ジアミノナフタレン(被験物質番号 K-602B)のコイにおける機縮度試験

財団法人 **イヒ学・品検査・協会** 化学品安全センター九州試験所

陳 述 書

財団法人 イヒー学・品・検っされる会 化学品安全センター九州試験所

試験委託者 通商産業省

試験の表題 1,8-ジアミノナフタレン(被験物質番号 K-602B)のコイにおける濃縮度試験

試験番号 50602B

上記試験は、昭和63年11月18日付、環企研第233号、衛生第38号及び63基局第823号による「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」に定める「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設に関する基準」に従って実施したものです。

平成元年3月9日

運営管理者______

信頼性保証書

財団法人 化学品検査協会 化学品安全センター九州試験所

試験委託者 通商産業省

試験の表題 1,8-ジアミノナフタレン(被験物質番号 K-602B)の

コイにおける濃縮度試験

試験番号 50602B

上記試験は財団法人化学品検査協会化学品安全センター九州試験所の信頼性保証部門が監査及び査察を実施しており、監査又は査察を行った日付並びに運営管理者及び試験責任者に報告を行った日付は以下の通りです。

2	査又は	查察E	3	報告	日(河	営管理	者)	報告日(試験責任者)				
平成	元年	1月2	20日	平成	元年	1月2	0日	平成	元年	1月2	20日	
平成	元年	1月2	28日	平成	元年	1月3	1日	平成	元年	1月3	30日	
平成	元年	2月	7日	平成	元年	2月	9日	平成	元年	2月1	10日	
平成	元年	3月	1日	平成	元年	3月	3日	平成	元年	3月	3日	
平成	元年	3月	3日	平成	元年	3月	3日	平成	元年	3月	3日	
平成	元年	3月	9日	平成	元年	3月	9日	平成	元年	3月	9日	

本最終報告書は、試験の方法が正確に記載されており、内容が試験計画及び標準操作手順に従い、かつ、生データを正確に反映していることを保証します。

平成一、年 3 月 9 日 信頼性保証業務担当者

平成 元年 3月 7日 信頼性保証責任者

目 次

		貝
要約	······································	1
1. 表 題		2
2. 試験委託者		2
3. 試験施設		2
4. 試験目的		2
5. 試験方法		2
6. 試験期間		3
7. 試験関係者	**************************************	3
8. 最終報告書作成日		3
9. 最終報告書の承認	g	3
10. 被験物質		4
11. 急性毒性試験		5
12. 濃縮度試験の実施	E	7
13. 試験結果		15
14. 試資料の保管		17
15. 備 考		1 7
16. 表の内容		19
17. 図の内容	••••••••••••	20
付表及び付図		

要約

1. 試験の表題 1,8-ジアミノナフタレン (被験物質番号 K-602B) の コイにおける濃縮度試験

2. 試験条件

- 2.1 急性毒性試験
 - (1) 供 試 魚 ヒメダカ
 - (2) ばく露期間 48時間
 - (3) ばく露方法 半止水式 (24時間目に換水)
- 2.2 濃縮度試験
 - (1) 供 試 魚 コイ
 - (2) 試験濃度 第1濃度区 0.1 概/2
 - 第2濃度区 0.01째/ℓ
 - (3) ばく露期間 6週間
 - (4) ばく露方法 連続流水式
 - (5) 分析方法 高速液体クロマトグラフィー

3. 試験結果

- (1) 48時間LC50値 12.3 mg/l
- (2) 濃 縮 倍 率 第 1 濃度区 3.6倍 ~ 6.1倍 第 2 濃度区 3.7倍以下~ 6.5倍

4. 被験物質の安定性

被験物質は保管条件下及び試験条件下で安定であることを確認した。

最終報告書

試験番号 50602B

- 1.表 題 1,8-ジアミノナフタレン (被験物質番号 K-602B) の コイにおける濃縮度試験
- 2. 試験委託者 名 称 通商産業省

住 所 (〒100) 東京都千代田区霞が関一丁目3番1号

3. 試験施設 名 称 財団法人 化学品検査協会 化学品安全センター九州試験所

住 所 (〒830) 福岡県久留米市中央町19-14 TEL (0942) 34-1500

運営管理者

- 4. 試 験 目 的 被験物質K-602Bのコイにおける濃縮性の程度について知見を 得る。
- 5. 試験方法 「新規化学物質に係る試験の方法について」(環保業第5号、薬発第615号、49基局第392号 昭和49年7月13日)に規定する〈魚介類の体内における化学物質の濃縮度試験〉による。

- 6. 試験期間
 - (1) 試験開始日 平成 元 年 1月20日
 - (2) 試験実施期間

供試魚受入日 昭和63年11月15日

じゅん化終了日 昭和6

昭和63年12月27日

ばく露開始日

平成元年 1月20日

ばく露終了日

平成元年 3月 3日

- (3) 試験終了日 平成元年 3月 9日
- 7. 試験関係者

試験責任者

試験担当者

飼育管理責任者

急性毒性試験担当者

試資料管理責任者

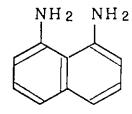
8. 最終報告書作成日

平成 元 年 3月 9日 作成者

9. 最終報告書の承認

試験責任者

平成 元年 3月9日


氏 名

10. 被験物質

本報告書において被験物質K-602Bは、次の名称及び構造式等を有するものとする。

- 10.1 名 称 1,8-ジアミノナフタレン
- 10.2 構造式等

構造式

分子式 C₁₀H₁₀N₂

分子量 158.20

- 10.3 純 度*1 100.2%
 - *1 添付資料による。
- 10.4 入手先、商品名及びロット番号
 - (1) 入 手 先
 - (2) 商品名
 - (3) ロット番号 AYO1
- 10.5 同 定

に記載の赤外吸収スペクトルと当試験所の当該測定スペクトルとが一致することを確認した(図-15参照)。また、質量スペクトル(図-16参照)及び核磁気共鳴スペクトル(図-18参照)についても測定を行い、構造を確認した。

- 10.6 保管条件及び保管条件下での安定性
 - (1) 保管条件 冷暗所
 - (2) 安定性確認 ばく露開始前及び終了後に被験物質の赤外吸収スペクトル を測定した結果(図-15参照)、両スペクトルは一致し、 保管条件下で安定であることを確認した。

10.7 試験条件下での安定性

ばく露開始前に予備検討を行い、試験条件下で安定であることを確認した。

11. 急性毒性試験

11.1 試験方法

工場排水試験方法 魚類による急性毒試験 (JIS K 0102-1986 の 71.) の方法 に準じて行った。

11.2 供試魚

- (1) 魚 種 ヒメダカ Oryzias latipes
- (2) 供給 源 中島養魚場

(住所 〒 869-01 熊本県玉名郡長洲町大明神)

(3) 蓄 養 条 件

期間等 魚の入手時に目視観察をして異状のあるものを除去し、 蓄養槽で薬浴後、流水状態で6日間飼育した。

薬 20個/&エルバージュ(上野製薬製)溶液及び7g/& 浴 塩化ナトリウム溶液を用いて止水状態で24時間薬浴を 行った。

- (4) じゅん化条件 じゅん化槽でじゅん化し、その間異状のあるものは除去 し、最終的には25±2℃の水温の流水状態で21日間 飼育した。
- (5) 体 平均 0.288 重
- (6) 全 長
- 平均 3.2 cm 田端健二*2の方法に準じ、塩化第二水銀検定合格魚と (7) 検 定 同一ロット (TFO-890105) のものを試験に供 した。
 - *2 用水と廃水、14,1297-1303 (1972)

11.3 試験用水

(1) 種 類

九州試験所敷地内で揚水した地下水

(2) 分析及び水質確認

当試験所にて水温、pH及び溶存酸素は連続測定を行った。また、化学的 酸素要求量、全硬度、蒸発残留物、塩素イオン及びアンモニア態窒素並びに 有機リン、シアンイオン、重金属等の有害物質は6ヶ月に1回定期的に分析 している。試験に供した用水は、分析した項目が水産環境水質基準(社団 法人 日本水産資源保護協会 昭和47年3月)に記載されている濃度以下 であることを確認した(参考資料1参照)。

11.4 試験条件

(1) 試験水槽 円型ガラス製水槽

(2) 試験液量 41/濃度区

(3) 試験水温 25±2℃

(4) 溶存酸素濃度 ばく露開始時 7.6~7.7 個/2

ばく露終了時 5.3~6.8 ペーク・8 ペーク・9 ペーク・9 ペー

ばく露開始時 8.1 (5) pH

ばく露終了時 7.7~7.8

(6) 供 試 魚 数10尾/濃度区(7) ばく露期間48時間

(8) ばく露方法 半止水式(24時間目に換水)

11.5 原液調製法

(1)分 散 剤 ジメチルスルホキシド

(2) 調製方法

被験物質を100倍量のジメテルスルホキシドに溶解した溶液をイオン 交換水に滴下し、100個/ℓの原液を調製した。

11.6 試験の実施

(1) 実 施 場 所 LC50測定室

(2) 試験実施日 平成元年 2月 6日 ~ 平成元年 2月 8日

11.7 48時間LC50値の算出 Doudoroff 法で行った。

11.8 試験結果

48時間LC50値 12.3 mg/l (図-3参照)

12. 濃縮度試験の実施

12.1 供試魚

(1) 魚 種 コイ Cyprinus carpio

(2) 供給源 杉島養魚場

(住所 〒 866 熊本県八代市郡築一番町 123-2)

(3) 蓄 養 条 件

期間等無の入手時に目視観察をして異状のあるものを除去し、

受入槽で薬浴後、流水状態で2日間飼育した。

薬 浴 50㎏/ℓ水産用テラマイシン散(台糖ファイザー製)

溶液及び78/2塩化ナトリウム溶液を用いて止水状態で

約24時間薬浴を行った。

(4) じゅん化条件 じゅん化槽でじゅん化し、その間異状のあるものは除去

し、最終的には25±2℃の水温の流水状態で32日間 飼育した。さらに試験水槽へ移し、同温度の流水状態で

23日間飼育した。

(5) ばく露開始時の体重、体長等*3

体 重 平均 22.18

体 長 平均 9.6cm

脂質含有率 平均 3.8%

*3 ロット(TFC-881115)の測定値

(6) 餌 料

種 類 コイ用ペレット状配合飼料

製 造 元 日本配合飼料株式会社

給餌方法 供試魚体重の約2%相当量を1日2回に分けて給餌した。

ただし、供試魚の採取前日は給餌を止めた。

12.2 試験用水

11.3に同じ。

12.3 試験及び環境条件

- (1) 試験水供給方法 当試験所組立流水式装置を用いた。
- (2) 試験水槽 1001 容ガラス製水槽
- (3) 試験 水量 原液2 ml/分及び試験用水800 ml/分の割合で 1155 l/日を試験水槽に供した。
- (4) 試 験 温 度 25±2℃
- (5) 溶存酸素濃度 第1濃度区 6.2~7.6 吨/ℓ(図-12参照)

第2濃度区 6.9~7.6 ~ (図-13参照)

対照区 7.1~7.9 mg/l(図-14参照)

(6) 供 試 魚 数 第1及び第2濃度区 15尾(ばく露開始時) 対照区 7尾(ばく露開始時)

(7) ばく露期間 6週間

(8) 実 施 場 所 第2アクアトロン室

12.4 原液調製法

- (1) 分 散 剤 11.5の(1) に同じ。
- (2) 調製方法
 - · 第1 濃度区

被験物質0.88を100倍量のジメチルスルホキシドに溶解した溶液をイオン交換水に滴下後81に定容し、100mg/lの溶液を調製した。

· 第2濃度区

被験物質0.088を100倍量のジメチルスルホキシドに溶解した溶液をイオン交換水に滴下後0.8』に定容し、100 ∞ /0の溶液を調製した。

· 対照区

ジメチルスルホキシド80㎖をイオン交換水に溶解した。

以上を251 容のガラス製原液タンクに入れ、イオン交換水にて201 に 定容後、試験水槽に供給した。

12.5 試験濃度

48時間LC50予備値及び被験物質の分析感度を考慮して、

第1濃度区 0.1 ms/l

第2濃度区 0.01嗎/4

に設定した。同時に、空試験として対照区を設定した。

12.6 試験水及び供試魚分析

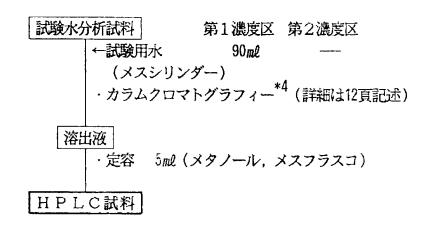
12.6.1 分析回数

試験水分析は第1、第2濃度区ともばく露期間中、毎週2回計12回行い、 1回当りの分析試料は1点とした。また、供試魚分析は第1、第2澆度区とも ばく露開始後、2,3,4及び6週の計4回行い、1回当りの分析試料は2尾 とした。対照区はばく露開始後及びばく露終了時に行い、1回当りの分析試料 は2尾とした。

12.6.2 分析試料の前処理

(1) 試験水

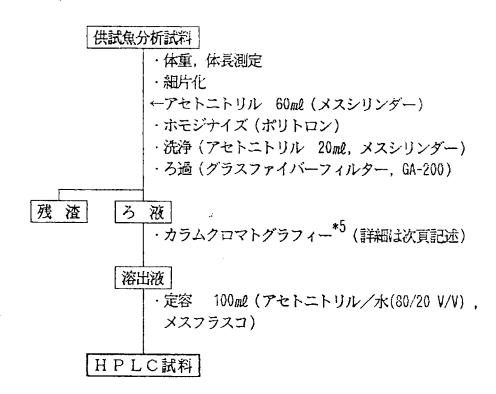
試験水槽から


第1濃度区

1 O ml

第2濃度区 100元

を採取し、以下のフロースキームに従って前処理操作を行い、高速液体クロ マトグラフィー (HPLC) 試料とした。


フロースキーム

(2) 供試魚

試験水槽から供試魚を採取し、以下のフロースキームに従って前処理操作を行い、HPLC試料とした。

フロースキーム

*4 カラムクロマトグラフの条件

セップパック ODS (メタノール、精製水にて洗浄)

負荷法 試料液全量を負荷する。

溶出法 第1溶出液 メタノール 4.5 ml

被験物質は第1溶出液で溶出する。

*5 カラムクロマトグラフの条件

クロマト管20mpガラス製充てん剤無水塩基性アルミナ58(アセトニトリルで充てん)

負荷法 試料液全量を負荷する。

浴出法 第1溶出液 アセトニトリル/水(80/20 V/V) 5 nd

被験物質は負荷分及び第1溶出液で溶出する。

12.6.3 定量分析

12.6.2の前処理を行って得られたHPLC試料は、以下の条件に基づき高速液体クロマトグラフィーにより定量を行った。最終定容液中の被験物質濃度は、クロマトグラム上の被験物質のピーク高さを濃度既知の標準溶液のピーク高さと比較し、比例計算して求めた(表-4,5,図-6,表-8,9,10,図-9,10,11参照)。

(1) 分析機器の定量条件

뽔 高速液体クロマトグラフ 機 カラム WAKOSIL-5C18 20cm×4.6mmゆ ステンレス製 溶離液 メタノール/りん酸緩衝液*6 (60/40 V/V) 流量 1. Oml/min 測定波長 335 m 注 入 量 50 M 感 度 検出器 0.005ABU/FS 記録計 レンジ 1 mV

*6 中性りん酸塩p H標準液 (pH=6.86) の市販品を精製水で10倍希釈した溶液。

(2) 標準溶液の調製

分析試料中の被験物質濃度を求めるための標準溶液の調製は次のように 行った。

·試験水分析

被験物質0.18を精秤し、メタノールに溶解した1000kmの標準原液を、さらにメタノールで希釈して0.2kmの標準溶液を調製した。

·供試魚分析

被験物質0.18を精秤し、メタノールに溶解した1000 kklの標準原液を、さらにアセトニトリル、アセトニトリル/水 (80/20 V/V)で希釈して0.2 kklの標準溶液を誤製した。

(3) 検量線の作成

検量線の作成は次のように試験水分析、供試魚分析それぞれについて 行った。

·試験水分析

(2) に示す試験水分析の標準溶液調製法と同様にして0.1、0.2及び0.4 MMの標準溶液を調製し、これらを(1) の定量条件に従って分析し、得られたそれぞれのクロマトグラム上の被験物質ピーク高さと濃度より検量線を作成した。

検量線より被験物質ピーク高さの測定限界値はノイズレベルを考慮して2mm(被験物質濃度 6.9 km/km)とした(図-4参照)。

·供試魚分析

(2) に示す供試魚分析の標準溶液調製法と同様にして0.1、0.2及び0.4 kmlmの標準溶液を調製し、これらを(1) の定量条件に従って分析し、得られたそれぞれのクロマトグラム上の被験物質ピーク高さと濃度より検量線を作成した。

検量線より被験物質ピーク高さの測定限界値はノイズレベルを考慮して 2mm(被験物質濃度 7.4mm)とした(図-7参照)。

12.6.4 回収試験及びブランク試験

(1) 方法

前述した試験水及び供試魚分析操作における被験物質の回収率を求めるため、試験水(対照区)及び魚体ホモジネートに、試験水(対照区)には被験物質分散液を、また魚体ホモジネートにはメタノール溶液を添加し、12.6.2及び12.6.3の操作に準じて回収試験を行った。また、被験物質を加えない試験水(対照区)及び魚体ホモジネートについて、回収試験の場合と同じ操作によりブランク試験を行った。回収試験及びブランク試験は、2点について測定した。この結果、ブランク試験においてクロマトグラム上、被験物質ピーク位置にはピークは認められなかった。分析操作における各2点の回収率及び平均回収率は下記に示すとおりであり、平均回収率を分析試料中の被験物質濃度を求める場合の補正値とした(表-3,7,図-5,8 参照)。

(2) 結果

分析操作における回収率

試験水分析(被験物質 1 点添加) 89.6%,87.7% 平均88.6% 供試魚分析(被験物質30 点添加) 72.1%,75.2% 平均73.6%

12.6.5 分析試料中の被験物質濃度の算出及び検出限界

(1) 試験水分析試料中の被験物質濃度の算出

表-6の計算式に従って計算し、計算結果は JIS I 8401-1961の方法を 用いて有効数字3ケタに丸めて表示した。

(2) 試験水中の被験物質の検出限界濃度

12.6.3 (3)の検量線作成で求めた被験物質の測定限界値より、試験水中の被験物質の検出限界濃度*¹はそれぞれ、

第1濃度区 3.9 % 第2濃度区 0.39 % と算出される。

(3) 供試魚分析試料中の被験物質濃度の算出

表-11の計算式に従って計算し、計算結果は JIS Z 8401-1961の方法を 用いて有効数字3ケタに丸めて表示した。

(4) 供試魚中の被験物質の検出限界濃度

12.6.3 (3)の検量線作成で求めた被験物質の測定限界値より、供試魚中の被験物質の検出限界濃度*¹は供試魚体重を308としたとき34 kg/8と算出される。

*7 被験物質検出限界濃度(応慮又は
$$R/8$$
) = $\frac{A}{100} \times \frac{C \times E}{D}$

A: 検量線上測定限界濃度(PCMC)

B:回収率(%)

C : 試験水採取量(w) 又は供試魚体重(g)

D : 最終液量(m2)

E: 分取比

計算結果は JIS Z 8401-1961の方法を用いて有効数字2ケタに丸めた。

12.7 濃縮倍率 (BCF) の算出

表-11の計算式に従って計算し、計算結果は JIS Z 8401-1961の方法を用い て有効数字2ケタに丸めて表示した。

なお、12.6.5 (4)で求めた供試魚中の被験物質検出限界濃度より、下記の倍率 を越えて濃縮されたとき濃縮倍率の算出が可能となる。

第1濃度区 0.3倍

第2濃度区

3.7倍

13. 試験結果

13.1 試験水中の被験物質濃度

試験水中の被験物質濃度を表-1に示す。

表-1 試験水中の被験物質濃度(ばく露開始時からの測定値の平均値)

(单位 re/l)

	2	週	3	週	4	週	6	週	付	表	付	Ø
第1濃度区	0.0972		0. 0981		0.0986		0. 101		表-4		⊠−6	
第2濃度区 0.00864		0.00920		0.0	0.00916		0916	表-5				

13.2 濃縮倍率

濃縮倍率を表-2に示す。

表-2 濃縮倍率

	2	週	3	週	4	週	6	週	付	表	付	X
第1濃度区	4. 7 3. 6		6. 1 6. 0		4.9 4.9		6. 0 4. 9		表	-8	図-	- 9
第2濃度区	3. 7L 3. 7L		3. 7J 6. 5	以下	3. 7 <u>1</u> 3. 7 <u>1</u>		3. 7J 3. 7J		表	-9	図-	-10

表-2の濃縮倍率とばく露期間との相関を図-1及び図-2に示した。被験物質のコイに対する濃縮性の程度は、濃縮倍率で第1濃度区において3.6倍~6.1倍、第2濃度区において3.7倍以下~6.5倍であり、両濃度区における濃縮性の程度はほぼ同じと考えられる。

供試魚は外観観察の結果、異常は認められなかった。

また、試験水中の平均被験物質濃度は表-1に示すように、ほぼ設定濃度が維持できた。

14. 試資料の保管

14.1 被験物質

保管用被験物質約208を保管用容器に入れ密栓後、「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」に定める「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設に関する基準」(以下「GLP基準」という。)第32条に定める期間、当試験所試料保管室に保管する。

14.2 生データ、資料等

試験により得られた分析結果、測定結果、観察結果、その他試験ノート等最終報告書の作成に用いた生データ、試験計画書、調査表、資料等は最終報告書と共に、「GLP基準」第32条に定める期間、当試験所資料保管室に保管する。

15. 備 考

- 15.1 試験に使用した機器、装置、特殊器具、試薬等
 - (1) 試験系 (飼育施設) に係わる装置

原液供給用微量定量ポンプ : 東京理化器械製 型 GMW 溶存酸素測定装置 : 飯島精密工業製 型 552 (2) 分析及び原液調製に使用した機器、装置、特殊器具、試薬機器

高速液体クロマトグラフ

ポンプ: 島津製作所製 型 LC-5A 検出器: 島津製作所製 型 SPD-2A

装置

ホモジナイザー : キネマチカ社製

特殊器具

セップパック ODS : 日本ミリポア・リミテッド社製

グラスファイバーフィルター: 東洋ろ紙製 型 GA-200

試薬

ジメチルスルホキシド : ナカライテスク製 EP試薬

メタノール : 和光純薬工業製 HPLC用

中性りん酸塩pH緩衝液 : 関東化学製 pH=6.86

アセトニトリル: 和光純薬工業製HPLC用

精製水 : 高杉製薬製 日本薬局方

塩基性アルミナ : INC バイオメディカル社製