# 最終報告書

1,4-ビス(イソプロピルアミノ)アントラキノン(被験物質番号 K-1763)の 微生物による分解度試験

(試験番号:205104)

2005年12月22日

化学物置整調研究機構 來歐墨耶樂斯

# 陳 述 書

財団法人 化学物質評価研究機構 久留米事業所

試験委託者

独立行政法人 新エネルギー・産業技術総合開発機構

試験の表題

1,4-ビス(イソプロピルアミノ)アントラキノン(被験物質番号 K-1763)

の微生物による分解度試験

試験番号

205104

上記試験は以下のGLPに従って実施したものです。

- (1) 「新規化学物質等に係る試験を実施する試験施設に関する基準について」(平成15年 11月21日、薬食発第1121003号、平成15・11・17製局第3号、環保企発第031121004号) に規定する「新規化学物質等に係る試験を実施する試験施設に関する基準」
- (2) OECD Principles of Good Laboratory Practice (November 26, 1997)

また、本最終報告書は生データを正確に反映しており、試験データが有効であることを確認しています。

試 験 責 任 者

2005年12月22日

# 信賴性保証書

財団法人 化学物質評価研究機構 久留米事業所

試験委託者

独立行政法人 新エネルギー・産業技術総合開発機構

試験の表題

1,4-ビス(イソプロピルアミノ)アントラキノン(被験物質番号 K-1763)

の微生物による分解度試験

試験番号

205104

本最終報告書は、試験の方法、手順が正確に記載され、試験結果は生データを正確に反映していることを保証します。

なお、監査又は査察の結果については、下記の通り試験責任者及び運営管理者に報告しました。

|              | •            |                       |
|--------------|--------------|-----------------------|
| 監査又は査察内容     | 監査又は査察日      | 報告日<br>(試験責任者及び運営管理者) |
| 試験計画書草案      | 2005 年 9月21日 | 2005 年 9月21日          |
| 試験計画書        | 2005 年 9月22日 | 2005 年 9月22日          |
| 培養開始時        | 2005 年 9月27日 | 2005 年 9月28日          |
| 中間時          | 2005年10月11日  | 2005年10月11日           |
| 培養終了時        | 2005年10月25日  | 2005年10月25日           |
| 生データ、最終報告書草案 | 2005年12月21日  | 2005 年 12 月 21 日      |
| 最終報告書        | 2005年12月22日  | 2005 年 12 月 22 日      |

2005年12月22日

信賴性保証部門責任者

# 目 次

|    |      |                       | 貝  |
|----|------|-----------------------|----|
|    | 表    | 題                     | 1  |
|    | 試験委託 | 者                     | 1  |
|    | 試験施  | 設                     | 1  |
|    | 試験目  | 的                     | 1  |
|    | 試 験  | 法                     | 1  |
|    | 適用G  | L P                   | 1  |
|    | 試験日  | 程                     | 2  |
|    | 試資料の | 保管                    | 2  |
|    | 試験関係 | 者                     | 2  |
|    | 最終報告 | ·書の承認 ······          | 2  |
|    | 要    | 約                     | 3  |
| 1. | 被験物  | 質                     | 4  |
| 2. | 活性汚  | 泥                     | 6  |
| 3. | 分解度討 | 験の実施                  | 7  |
| 4. | 試験条件 | ÷の確認                  | 14 |
| 5. | 試験成績 | の信頼性に影響を及ぼしたと思われる環境要因 | 14 |
| 6. | 試験結  | 果                     | 14 |
| 7. | 備    | 考                     | 16 |

| Tables  |                                                                 |
|---------|-----------------------------------------------------------------|
| Table-1 | Calculation table for percentage biodegradation by BOD          |
| Table-2 | Calculation table for recovery rate of test item                |
| Table-3 | Calculation table for percentage biodegradation of test item    |
| Figures |                                                                 |
| Fig.1   | Chart of BOD                                                    |
| Fig.2-1 | Chromatograms of HPLC analysis for calibration curve            |
| Fig.2-2 | Calibration curve of test item                                  |
| Fig.3   | Chromatograms of HPLC analysis for recovery test                |
| Fig.4   | Chromatograms of HPLC analysis for test solution                |
| Fig.5   | VIS spectrum of test item                                       |
| Fig.6-1 | IR spectrum of test item measured before experimental start     |
| Fig.6-2 | IR spectrum of test item measured after experimental completion |
| Fig.7   | Mass spectrum of test item                                      |
| Fig.8   | NMR spectrum of test item                                       |

表 題

1,4-ビス(イソプロピルアミノ)アントラキノン(被験物質番号 K-1763)の微生物による分解度試験

試験委託者

独立行政法人 新エネルギー・産業技術総合開発機構 (〒212-8554) 神奈川県川崎市幸区大宮町1310番

試験施設

財団法人 化学物質評価研究機構 久留米事業所 (〒839-0801) 福岡県久留米市宮ノ陣三丁目2番7号

試験目的

K-1763の微生物による分解性の程度について知見を得る。

試 験 法

本試験は以下の試験法に従って行った。

- (1)「新規化学物質等に係る試験の方法について」(平成15年 11月21日、薬食発第1121002号、平成15·11·13製局第2号、 環保企発第031121002号)に規定する(微生物等による化学 物質の分解度試験)
- (2)「OECD Guideline for Testing of Chemicals」に定める
  "Ready Biodegradability: Modified MITI Test (I) (Guideline 301C, July 17, 1992)"

適用 GLP

本試験は以下の基準を適用した。

- (1)「新規化学物質等に係る試験を実施する試験施設に関する基準について」(平成15年11月21日、薬食発第1121003号、平成15・11・17製局第3号、環保企発第031121004号)に規定する「新規化学物質等に係る試験を実施する試験施設に関する基準」
- (2) 「OECD Principles of Good Laboratory Practice」 (November 26, 1997)

# 試験日程

 試験開始日
 2005年9月22日

 実験開始日
 2005年9月27日

 実験終了日
 2005年10月25日

 試験終了日
 2005年12月22日

#### 試資料の保管

# (1) 被験物質

被験物質を保管用容器に入れ密栓後、品質低下を起こさないで安定に保存し うる期間、久留米事業所試料保管室に保管する。

# (2) 生データ、資料等

生データ、試験計画書、試験委託書、その他必要な資料等は最終報告書と共に、 試験委託者から通知を受けるまでの期間、久留米事業所資料保管室に保管する。

# 試験関係者

#### 最終報告書の承認

試 験 責 任 者

2005 年12月22日

# 要 約

### 試験の表題

1,4-ビス(イソプロピルアミノ)アントラキノン(被験物質番号 K-1763)の微生物による分解度試験

### 試験条件

(1) 被験物質濃度 100mg/L

(2) 活性汚泥濃度 30mg/L (懸濁物質濃度として)

(3) 試 験 液 量 300mL

(4) 試験液培養温度 25±1℃

(5) 試験液培養期間 28日間(遮光下)

# 分解度算出のための測定及び分析

- (1) 閉鎖系酸素消費量測定装置による生物化学的酸素消費量 (BOD) の測定
- (2) 高速液体クロマトグラフィー (HPLC) による被験物質の定量分析

### 試験結果

(1) BOD分解度 1%, 0%, 1% 平均 1%

(2) 被験物質分解度(HPLC) 0%, -2%, -1% 平均 0% (-1%) \*1

\*1 分解度の平均値が負の値に算出されたため、平均値を0としカッコ内にその計算値を示した。

### 結 論

本試験条件下において、被験物質は微生物により分解されなかった。

# 1. 被験物質

本報告書においてK-1763は、次の名称等を有するものとする。

1.1 名 称

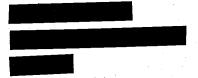
1,4-ビス(イソプロピルアミノ)アントラキノン

1.2 構造式等

構造式

分子式

C20H22N2O2


分子量

, 322.40

CAS番号

14233-37-5

- 1.3 入手先、商品名及びロット番号2
  - (1)入 手 先
  - (2)商品名
  - (3) ロット番号



- \*2 入手先添付資料による。
- 1.4 純 度

被験物質

100% (HPLCによる)

# 1.5 被験物質の確認

被験物質の赤外吸収スペクトル及び質量スペクトルを測定し、独立行政法人 産業 技術総合研究所の有機化合物スペクトルデータベースに記載のスペクトルと一致 することを確認した (Fig.6,7参照)。また、核磁気共鳴スペクトルにより構造を 確認した (Fig.8参照)。

### 1.6 保管条件及び保管条件下での安定性確認

- (1) 保管条件 室温暗所保存
- (2) 安定性確認 実験開始前及び終了後に被験物質の赤外吸収スペクトルを測定した結果、両スペクトルは一致し、保管条件下で安定であることを確認した(Fig.6参照)。

- 2. 活性汚泥
- 2.1 汚泥の採集場所及び時期

(1)場 所 以下の全国10ヵ所から採集した。

(大古川処理場(北海道札幌市) 深芝処理場(茨城県鹿島郡) 中浜処理場(大阪府大阪市) 落合処理場(東京都新宿区)

北上川 (宮城県石巻市) 信濃川 (新潟県新潟市) 吉野川 (徳島県徳島市) 琵琶湖 (滋賀県大津市) 広島湾 (広島県広島市) 洞海湾 (福岡県北九州市)

(2) 時期 2005年 6月

#### 2.2 採集汚泥

(1) 下水処理場 返送汚泥

(2) 河川、湖沼及び海 表層水及び大気と接触している波打際の表土

#### 2.3 活性汚泥の調製

活性汚泥の均一性を保つため、上記で採集してきた各地の汚泥混合液のろ液5Lと、約3ヶ月間培養した活性汚泥 $^{*3}$ のろ液5Lとを混合して10Lとし、pHを $7.0 \pm 1.0$ に調整して培養槽でばっ気 $^{*4}$ した。

- \*3 上記で採集してきた各地の汚泥混合液のろ液10Lを、下記2.4に従って培養した 活性汚泥。
- \*4 屋外空気をプレフィルターに通し、ばっ気に用いた。

#### 2.4 培 養

培養槽へのばっ気を約30分間止めた後、全量の約1/3量の上澄液を除去した。これに脱塩素水道水を加え全量を10Lにして再びばっ気し(30分間以上)、添加した脱塩素水道水中での合成下水濃度が0.1%になるように50g/L合成下水\*5を添加した。この操作を毎日1回繰り返し、培養して活性汚泥とした。培養温度は25±2℃とした。

\*5 グルコース、ペプトン、りん酸二水素カリウムをそれぞれ50g/Lになるように 精製水に溶解し、水酸化ナトリウムでpHを7.0±1.0に調整した。

### 2.5 管理及び使用

活性汚泥の正常な状態を維持するため、培養中、上澄液の外観及び活性汚泥の 生成状態を観察するとともに、活性汚泥の沈でん性、pH、温度及び溶存酸素濃度を 測定し、管理基準 (「新規化学物質等に係る試験の方法について」参照) の範囲内 であることを確認した。この結果を生データとして保管した。活性汚泥の生物相 は適宜光学顕微鏡を用いて観察し、異常のないことを確認した上で試験に供した。 また、合成下水を添加してから19.5時間後の活性汚泥を使用した。

#### 2.6 活性汚泥の活性度の点検及び使用開始日

(1) 活性汚泥の活性度の点検

標準物質を用いて活性汚泥使用開始前に活性度を点検した。

- (2) 活性汚泥使用開始日 2005年 7月12日
- 3. 分解度試験の実施
- 3.1 試験の準備
  - (1) 活性汚泥の懸濁物質濃度の測定

活性汚泥の添加量を決定するために、懸濁物質濃度を測定した。

測 定 方 法 「工場排水試験方法, 懸濁物質」(JIS K 0102-1998 の 14.1)に準じて行った。

測定実施日 2005年 9月26日

測 定 結 果 活性汚泥の懸濁物質濃度は4030mg/Lであった。

#### (2) 基礎培養基の調製

「工場排水試験方法,生物化学的酸素消費量」(JIS K 0102-1998 の 21.) に 定められた組成のA液、B液、C液及びD液それぞれ3mLに精製水(高杉製薬製 日本薬局方)を加えて1Lとし、pHを7.0に調整した。

#### (3) 対照物質

試験の実施には汚泥が十分な活性度を有することを確認するため、対照物質としてアニリン(昭和化学製 試薬特級 ロット番号 SP-3442Z)を用いた。

# 3.2 試験液の調製

試験容器を6個用意し、試験液を下記の方法で調製した。これらの試験液について、3.3の条件で培養を行った。

#### (1) 被験物質及びアニリンの添加

(a) (水+被験物質) 系 (1個, 試験容器 [1])

被験物質濃度が100mg/Lになるように、試験容器に精製水300mL及び被験物質30mgを入れた。被験物質は電子分析天びんで正確にはかりとり添加した。

(b) (汚泥+被験物質) 系 (3個, 試験容器 [2] [3] [4])

被験物質濃度が100mg/Lになるように、試験容器に基礎培養基 [300mLから活性汚泥添加液量 (2.23mL) を差し引いた量] 及び被験物質30mgを入れた。被験物質は電子分析天びんで正確にはかりとり添加した。

(c) (汚泥+アニリン) 系 (1個, 試験容器 [6])

アニリンの濃度が100 mg/Lになるように、試験容器に基礎培養基 [300 mLから活性汚泥添加液量 (2.23 mL) を差し引いた量] 及びアニリン $29.5 \mu$ L [添加量30 mg =  $29.5 \mu$ L  $\times$   $1.022 \text{g/cm}^3$  (密度)] を入れた。アニリンはマイクロシリンジで分取して添加した。

(d) 汚泥ブランク系 (1個, 試験容器 [5])

試験容器に基礎培養基 [300mLから活性汚泥添加液量(2.23mL)を差し引いた量]を入れた。

#### (2) 活性汚泥の接種

(b)、(c)及び(d)の試験液に2.の条件で調製した活性汚泥を懸濁物質濃度として30mg/Lになるように接種した。

#### 3.3 試験液培養装置及び環境条件

### (1) 試験液培養装置

閉鎖系酸素消費量測定装置

恒温槽及び測定ユニット 大倉電気製

データ処理装置 旭テクネイオン製

試 験 容 器 300mL用培養瓶(改良型培養瓶)

炭酸ガス吸収剤 ソーダライム, No.1

(和光純薬工業製 二酸化炭素吸収用)

(2) 環境条件

試験液培養温度 25±1℃

試験液培養期間 28日間(遮光下)

撹 拌 方 法 マグネチックスターラーによる回転撹拌

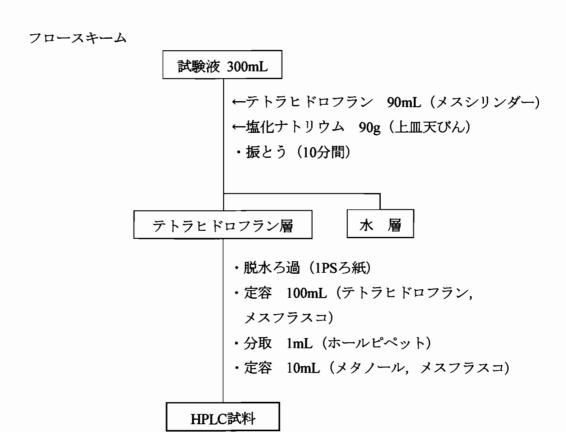
(3) 実施場所 クーロ室A

### 3.4 観察、測定等

# (1) 観 察

培養期間中、試験液の状況を毎日目視観察した。また、装置の作動状況を適宜 点検した。

# (2) 生物化学的酸素消費量(BOD)の測定


培養期間中、試験液のBODの変化を連続的にデータ処理装置で自動記録して 測定した。また、槽内温度は毎日測定記録した。

# 3.5 試験液の分析

培養期間終了後、試験液中に残留している被験物質について分析した。なお、(水 +被験物質) 系及び(汚泥+被験物質) 系の試験液のpHを測定した。

### 3.5.1 試験液の前処理

(水+被験物質)系、(汚泥+被験物質)系及び汚泥ブランク系の試験液について以下のフロースキームに従って前処理操作を行い、被験物質を分析するための高速液体クロマトグラフィー(HPLC)試料を調製した。



# 3.5.2 高速液体クロマトグラフィーによる被験物質の定量分析

前処理を行って得られたHPLC試料について、下記の定量条件に基づき被験物質を分析した。HPLC試料中の被験物質の濃度は、クロマトグラム上で得られた標準溶液30.0mg/Lのピーク面積とHPLC試料のピーク面積とを比較し、比例計算して求めた(Table-3、Fig.4参照)。

ピーク面積の定量下限は、ノイズレベルを考慮して $2100\mu V$ ・sec (被験物質濃度 0.30mg/L) とした。

# (1) 定量条件

| 機器          | 高速液体クロマトグラフ                     |
|-------------|---------------------------------|
| ポンプ         | 島津製作所製 LC-10ADvp                |
| 検 出 器       | 島津製作所製 SPD-10AV                 |
| カラムオーブン     | 島津製作所製 CTO-10ACvp               |
| オートインジェクター  | 島津製作所製 SIL-10ADvp               |
| デガッサー       | 島津製作所製 DGU-12AM                 |
| システムコントローラー | 島津製作所製 SCL-10Avp                |
| カ ラ ム       | L-column ODS                    |
|             | (15cm×4.6mmI.D.,化学物質評価研究機構製)    |
| カラム温度       | 35℃                             |
| 溶 離 液       | A(10%): 50mmol/L酢酸アンモニウム*6      |
|             | B(90%): メタノール (50mmol/L酢酸アンモニウム |
|             | 含有)                             |
| 流量          | 1.0mL/min                       |
| 測 定 波 長     | 555nm (Fig.5参照)                 |
| 注 入 量       | 5μL                             |
| 検 出 器 出 力   | 1 <b>V/A</b> U                  |

\*6 水道水を超純水装置システムで処理した水に酢酸アンモニウムを50mmol/Lになるように溶解した。

### (2) 標準溶液の調製

分析試料中の被験物質濃度を求めるための標準溶液の調製は次のように行った。 被験物質100mgを正確にはかりとり、テトラヒドロフランに溶解して1000mg/L の被験物質溶液を調製した。これをテトラヒドロフラン/メタノール(10/90 V/V) で希釈して30.0mg/Lの標準溶液とした。

### (3) 検量線の作成

(2)の標準溶液の調製と同様にして7.50、15.0及び30.0mg/Lの標準溶液を調製した。 これらを(1)の定量条件に従って分析し、得られたそれぞれのクロマトグラム上の ピーク面積と濃度により検量線を作成した(Fig.2参照)。

#### 3.5.3 回収試験及びブランク試験

前述した前処理における試験液からの被験物質の回収率を求めるため、3.2に準じて調製した(水+被験物質)系及び(汚泥+被験物質)系の試験液について3.5.1及び3.5.2に従い、回収試験を行った。また、3.2に準じて調製した汚泥ブランク系の試験液について回収試験と同じ操作によりブランク試験を行った。回収試験については各2点、ブランク試験については1点測定した。この結果、ブランク試験においてクロマトグラム上、被験物質ピーク位置にはピークは認められなかった。分析操作における各2点の回収率及び平均回収率は下記のとおりであり、平均回収率を試験液中の被験物質濃度を求める場合の補正値とした(Table-2、Fig.3参照)。

(水 +被験物質)系回収率 93.9%, 96.3% 平均 95.1% (汚泥+被験物質)系回収率 96.2%, 91.8% 平均 94.0%

# 3.6 分解度の算出法

分解度は下記の式に基づき算出し、小数点以下1ケタ目を丸めて整数位で表示 した。

# (1) BOD分解度

分解度 (%) = 
$$\frac{BOD - B}{TOD} \times 100$$

BOD : (汚泥+被験物質)系の生物化学的酸素消費量

(測定値) (mg)

B: 汚泥ブランク系の生物化学的酸素消費量

(測定値) (mg)

TOD: 被験物質が完全に酸化された場合に必要とされる

理論的酸素消費量(計算值)(mg)

# (2) 被験物質分解度

分解度 (%) = 
$$\frac{Sw - Ss}{Sw} \times 100$$

Ss : (汚泥+被験物質) 系における被験物質の残留量

(測定値)(mg)

Sw: (水+被験物質) 系における被験物質の残留量

(測定値) (mg)

### 3.7 数値の取扱い

数値の丸め方は、JIS Z 8401:1999 規則Bに従った。

# 4. 試験条件の確認

試験の有効性の基準値と本試験における値を下表に示す。本試験における値はいずれも基準値を満たしたことから、本試験は有効であった。

|                   |           | 本試験における値 | 基準値                  | 参照               |  |
|-------------------|-----------|----------|----------------------|------------------|--|
| 分解度の最大値<br>と最小値の差 | BOD分解度    | 1%       | 200/十次#              | 6.3項<br>分解度      |  |
|                   | 被験物質 分解 度 | 2%       | 20%未満                |                  |  |
| アニリンのBOD<br>分解度   | 7日後       | 70%      | 40%以上                | Table-1<br>Fig.1 |  |
|                   | 14日後      | 75%      | 65%以上                |                  |  |
| 汚泥ブランク系の<br>BOD値  | 28日後      | 8.2mg    | 18mg未満<br>(60mg/L未満) | Table-1<br>Fig.1 |  |

# 5. 試験成績の信頼性に影響を及ぼしたと思われる環境要因

当該要因はなかった。

# 6. 試験結果

# 6.1 試験液の状況

試験液の状況は下記のとおりであった。

|               | 試験液         | 状 況                                               | pН                            |
|---------------|-------------|---------------------------------------------------|-------------------------------|
| 培養開始時         | ( 水 +被験物質)系 | 被験物質は溶解しなかった。<br>試験液は無色であった。                      | -                             |
|               | (汚泥+被験物質) 系 | 被験物質は溶解しなかった。<br>試験液は無色であった。                      | -                             |
| <b>拉美%</b> 字吐 | (水 +被験物質)系  | 不溶物が認められた。<br>試験液は青色であった。                         | [1] 5.6                       |
| 培養終了時         | (汚泥+被験物質) 系 | 汚泥以外の不溶物が認められた。<br>汚泥の増殖は認められなかった。<br>試験液は青色であった。 | [2] 7.4<br>[3] 7.4<br>[4] 7.5 |

# 6.2 試験液の分析結果

28日後の分析結果は下記のとおりであった。

なお、(水+被験物質)系、(汚泥+被験物質)系共に被験物質はほぼ理論量 残留し、HPLCクロマトグラム上に被験物質以外のピークは認められなかった。 よって、変化物は生成しなかったと判断されたため分析対象としなかった。

|                  |    | (水+被験物質)系<br>[1] | (汚派<br>[2] | E+被験物<br>[3] | 質)系  | 理論量  | Table | Fig. |
|------------------|----|------------------|------------|--------------|------|------|-------|------|
| BOD*7            | mg | 1.0              | 0.8        | 0            | 0.7  | 78.9 | 1     | 1    |
| 被験物質残留量<br>及び残留率 | mg | 30.1             | 30.0       | 30.8         | 30.4 | 30.0 | 2     | 4    |
| 及い技留率<br>(HPLC)  | %  | 100              | 100        | 103          | 101  | _    | 3     | 4    |

\*7 (汚泥+被験物質)系は、汚泥ブランク系の値を差し引いて表示した。

# 6.3 分解度

28日後の分解度は下記のとおりであった。

|                   |   |     | (汚泥+被 | 験物質)系 |           | Table  |
|-------------------|---|-----|-------|-------|-----------|--------|
|                   |   | [2] | [3]   | [4]   | 平均        | 1 4016 |
| BOD分解度            | % | 1   | 0     | 1     | 1         | 1      |
| 被験物質分解度<br>(HPLC) | % | 0   | -2    | -1    | 0 (-1) *1 | 3      |

\*1 分解度の平均値が負の値に算出されたため、平均値を0としカッコ内にその計算値を示した。

#### 6.4 結 論

本試験条件下において、被験物質は微生物により分解されなかった。

### 7. 備 考

7.1 試験に使用した主要な装置・機器

閉鎖系酸素消費量測定装置: 9頁参照高速液体クロマトグラフ: 11頁参照

紫外可視分光光度計 : 日本分光製 V-560

フーリエ変換赤外分光光度計: 島津製作所製IRPrestige-21質量分析計: 日本電子製JMS-700QQフーリエ変換核磁気共鳴装置: 日本電子製JNM-MY60F

フーリエ変換核磁気共鳴装置: 日本電子製JNM-MY60FT天びん: ザルトリウス製BP210S

pH計: 東亜電波工業製HM-50G振とう機: タイテック製SR-2w

7.2 分析に使用した試薬

メタノール: 和光純薬工業製HPLC用テトラヒドロフラン: 関東化学製HPLC用塩化ナトリウム: マナック製試薬一級酢酸アンモニウム: 和光純薬工業製試薬特級

| Study No. 205104        | ( Test item <u>K-1763</u>               | )                                   |
|-------------------------|-----------------------------------------|-------------------------------------|
| Cultivating conditions: |                                         |                                     |
| Concentration           |                                         |                                     |
| Test item               |                                         | 100 (mg/L)                          |
| Reference item (ar      | niline)                                 | 100 (mg/L)                          |
| Activated sludge        | *************************************   | 30 (mg/L)                           |
|                         | *************************************** |                                     |
| Duration                | *************************************** | 28 days (Sep.27,2005 - Oct.25,2005) |
| Note: —                 |                                         |                                     |
|                         |                                         |                                     |

| Vessel | Sample Description | BOD (mg) |          |          |          |  |
|--------|--------------------|----------|----------|----------|----------|--|
| No.    | Sample Description | 7th day  | 14th day | 21st day | 28th day |  |
| [1]    | Water + test item  | 0.8      | 1.0      | 1.0      | 1.0      |  |
| [2]    | Sludge + test item | 5.0      | 7.9      | 9.0      | 9.0      |  |
| [3]    | Sludge + test item | 4.2      | 7.1      | 8.2      | 8.2      |  |
| [4]    | Sludge + test item | 4.7      | 7.8      | 8.9      | 8.9      |  |
| [5]    | Control blank [B]  | 4.0      | 6.8      | 8.2      | 8.2      |  |
| [6]    | Sludge + aniline   | .67.5    | 74.8     | 76.2     | 76.2     |  |

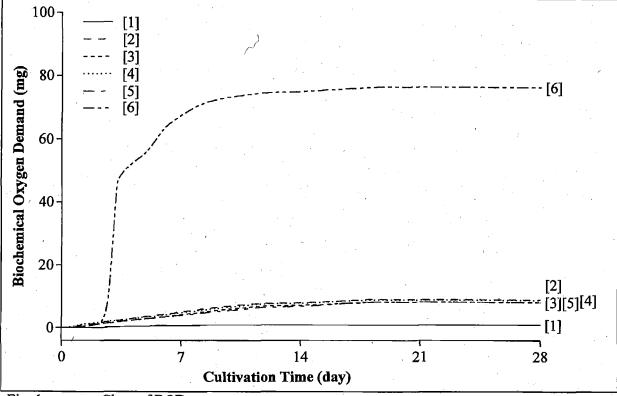



Fig. 1 Chart of BOD.

Oct.25,2005 Name