認定プログラムの名称	ASNITE認定プログラム
認定番号及び付加情報	ASNITE 0001 C
初回認定日	2002年8月15日
最新交付日	2014年4月25日
認定された事業所の名称	独立行政法人産業技術総合研究所 計量標準総合センター
及び所在地	〒305-8563 茨城県つくば市梅園1-1-1
問い合わせ窓口	Tel: 029-861-4026
	Fax: 029-861-4018
備考	当該認定事業者は、校正事業者としてISO/IEC 17025:2005 (JIS Q 17025:2005)に適合しています。

校正事業者の認定の区分:質量及び関連量

1/56校正•測定能力 種類 認定年月日 校正対象 拡張不確かさ 校正範囲 備考 (校正方法) (k=2)0.012 mg100 g 0.022 mg $200~\mathrm{g}$ 0.033 mg 500 g 分銅 0.058 mg1 kg (真の質量) 0.23 mg2 kg5 kg 0.45 mg10 kg 0.85 mg1 mg 0.0006 mg0.0006 mg $2\ \mathrm{mg}$ 0.0006 mg $5~\mathrm{mg}$ 10 mg 0.0008 mg20 mg 0.0010 mg 0.0012 mg 50 mg 0.0015 mg100 mg200 mg0.0020 mg $500 \ \mathrm{mg}$ 0.0025 mg0.0030 mg1 g 2 g 0.0040 mg質量 0.0050 mg 2013年4月26日 5 g $10~\mathrm{g}$ 0.0060 mg20 g $0.0080\;\mathrm{mg}$ 50 g 0.010 mg 分銅 (協定質量) 0.015 mg100 g 200 g 0.030 mg $500~\mathrm{g}$ $0.075~\mathrm{mg}$ 0.15 mg1 kg 0.30 mg $2~\mathrm{kg}$ 0.75 mg 5 kg 10 kg1.5 mg $20~\mathrm{kg}$ 3.0 mg 50 kg 0.008 g $100~\mathrm{kg}$ 0.20 g $0.50 \mathrm{~g}$ 200 kg500 kg 1.2 g $1000~\mathrm{kg}$ 3.0 g $2000~\rm kg$ $7.6~\mathrm{g}$ 5000 kg19 g

	_				2/56
]		
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
		10 N 以上 500 kN 以下	圧縮力及び引張力	0.0020%	
カ	力計	500 kN 超 1 MN 以下	圧縮力及び引張力	0.010%	
		1 MN 超 20 MN 以下	圧縮力	0.010%	
		0.1 N·m 以上 5 N·m未満		1.0×10^{-4}	2013年4月26日
	トルクメータ	5 N·m 以上 1 kN·m以下		5.0×10^{-5}	2013年4月20日
トルク		1 kN·m 超 20 kN·m以下		7.0×10^{-5}	
	参照用	5 N·m 以上 1 kN·m 以下		7.0×10^{-5}	
	トルクレンチ	1 kN·m 超 5 kN·m 以下		1.0×10^{-4}	

					3/56
種類	校正対象	校正範囲 備考		拡張不確かさ (<i>k</i> =2)	認定年月日
	ロックウェル硬さ基準機ロックウェル硬さ標準片	20 HRC 40 HRC 60 HRC 20 HRC 以上 40 HRC 未満 40 HRC 以上 65 HRC 以下		0.15 HRC 0.15 HRC 0.15 HRC 0.34 HRC	
硬さ	ビッカース硬さ 基準機	200 HV30 600 HV30 900 HV30		1.6 % 1.7 % 1.8 %	2012年5月21日
	ビッカース硬さ 標準片	200 HV ∼950 HV		a) くぼみ対角線の長さ d < 200 μm 1.0 + (200/d) % b) くぼみ対角線の長さ d ≧ 200 μm 2 %	
衝撃値	基準シャルピー 衝撃試験機 及び 基準試験片	公称30 J 公称100 J 公称160 J		公称30 Jの拡張不確かさ2.3 J 公称100 Jの拡張不確かさ3.3 J 公称160 Jの拡張不確かさ5.3 J	2009年6月29日

					4/56
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
		750 m³/h 以上 12000 m³/h 以下	高レイノルズ数 液体流量校正装置	0.081 %	
		50 m³/h 以上 3000 m³/h 以下	液体流量校正装置 50 t	0.060 %	
	液体用流量計	5 m³/h 以上 300 m³/h 以下	液体流量校正装置 5 t	0.042 %	
		0.3 m³/h以上 30 m³/h 以下	液体流量校正装置 500 kg タンクシステム	0.044 %	
		0.002 m³/h 以上 1.2 m³/h 以下	液体流量校正装置 10 kg タンクシステム	0.039 %	2014年4月25日
		50 m³/h以上 3000 m³/h以下	液体流量校正装置 50 t	0.060 %	
	液体流量校正装置	5 m³/h以上 300 m³/h以下	液体流量校正装置 5 t	0.042 %	
	似件侧里仅止衣包	0.3 m ³ /h以上 30 m ³ /h以下	液体流量校正装置 500 kg タンクシステム	0.044 %	
		0.005 m³/h以上 1.2 m³/h以下	液体流量校正装置 10 kg タンクシステム	0.039 %	
	気体流量校正装置	$0.005 \text{ g/min} \leq Q_{\text{m}} \langle$		$(0.0006/Q_{\rm m} + 0.045)\%$	
		0.1 g/min	室素ガス、乾燥空気	Q _m (g/min)は質量流量	
流量		$0.1 \text{ g/min} \le Q_{\text{m}} < 100 \text{ g/min}$		(0.001 Q _m +0.05) %	
/儿里		$\frac{180 \text{ g/min}}{0.1 \text{ g/min} \le Q_{\text{m}}} <$		Q _m (g/min)は質量流量 (0.002/Q _m +0.04)%	+
		0.2 g/min		Q _m (g/min)は質量流量	
	及び ISO型音速ノズル	$0.2 \text{ g/min} \leq Q_{\text{m}} <$	- アルゴン	$(0.0006Q_{\rm m} + 0.05)\%$	
	130至自歴ノバル	110 g/min		$Q_{ m m}$ (g/min)は質量流量	
		$0.1~{ m g/min} \leq Q_{ m m} <$		$(0.02/Q_{\rm m} + 0.02)$ %	1
		0.5 g/min	ヘリウム	$Q_{ m m}$ (g/min)は質量流量	
		$0.5~{ m g/min} \le Q_{ m m} \le$	1,004	$(0.005Q_{\rm m} + 0.06)\%$	
		30 g/min		Q_{m} (g/min)は質量流量	
	ISO型音速ノズル 及び	$0.005 \text{ g/min} \le Q_{\text{m}} < 0.1 \text{ g/min}$	窒素ガス、乾燥空気	(0.0006/Q _m +0.065) % Q _m (g/min)は質量流量	2012年12月12日
	気体小流量用流量計	$0.1 \text{ g/min} \le Q_{\text{m}} < 180 \text{ g/min}$	主水沙八平山朱上八	(0.0011 $Q_{ m m}$ +0.07) % $Q_{ m m}$ (g/min)は質量流量	
	気体小流量用流量計	$0.01 \text{ mg/min} \le Q_{\text{m}} \le 5 \text{ mg/min}$	窒素ガス、乾燥空気	0.42 %	
	ISO型音速ノズル	5 m³/h以上 200 m³/h以下	圧力範囲 0.1 MPa~0.5 MPa	0.17 %	
	気体流量計	5 m ³ /h以上 1000 m ³ /h以下	圧力範囲 0.1 MPa~0.5 MPa	0.28 %	
	微風速校正風洞	$0.05 \text{ m/s} \le v \le 1.5 \text{ m/s}$		[0.0069+(0.025v+0.005) ²] m/s 但し、校正対象の不確かさ成分は 含まれていない。	
	気体用流速計	$0.05 \text{ m/s} \le v \le 1.5 \text{ m/s}$		$[0.0069+(0.025v+0.005)^2] \text{ m/s}$	

	校正•測定能力						
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日		
	レーザ流速計	$1.3~\text{m/s} \leq v \leq 27.5~\text{m/s}$		$[0.091+0.22/(v^2-0.9v)]$ %			
	アーダがは全日	$27.5~\text{m/s} < \text{v} \leq 40~\text{m/s}$		$\begin{bmatrix} -0.0002386 v^3 + 0.02331 v^2 - \\ 0.7409 v + 7.801 \end{bmatrix} \%$	2012年12月12日		
流量	気体流速計(超音波流速計等)	$1.3~\text{m/s} \leq \text{v} \leq 27.5~\text{m/s}$		$[0.297+0.27/(v^2-0.77v)]$ %	2012 - 12/) 12 μ		
		27.5 m/s < v ≤40 m/s		$\begin{bmatrix} -0.0001185v^3 + 0.01157v^2 - \\ 0.3677v + 4.124 \end{bmatrix} \%$			
	石油用流量計(体積流量)	0.1 m³/h 以上 300 m³/h以下		0.030 %			
	石油用流量計(質量流量)	0.022 kg/s以上 67 kg/s以下		0.020 %	2014年4月25日		
	石油用流量計(体積流量)	1 L/h以上 100 L/h以下		0.064 %	201 11十1 万20日		
	石油用流量計(質量流量)	2.2×10 ⁻⁴ kg/s 以上 2.2×10 ⁻² kg/s以下		0.020 %			

		校正•測定能力						
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日			
	シリコン単結晶(液中ひょう量法)	シリコン単結晶(液中で トェう量法) 2320 kg/m ³ 以上		密度: (0.87/V + 0.0000022V -0.0014) kg/m³ (Vは校正器物の体積、単位はcm³)				
		2340 kg/m ³ 以下	20 ℃ 1000 g以上 1010 g以下	密度:0.00070 kg/m ³				
密度	固体材料(液中ひょう量法)	800 kg/m ³ 以上 20 000 kg/m ³ 以下	20℃ 1g以上 1010g以下	密度: $(0.87/V + 0.0000022 V - 0.0014) \times (\rho / 2329) \text{ kg/m}^3$ $(Vは校正器物の体積、単位は\text{cm}^3) (\rho \text{ は校正器物の密度、単位はkg/m}^3)$	2013年4月26日			
		600 kg/m³以上 700 kg/m³以下		$0.016~\mathrm{kg/m}^3$				
		700 kg/m³超 1100 kg/m³以下		$0.015~\mathrm{kg/m}^3$				
	密度標準液(磁気懸架式 密度計)	1100 kg/m ³ 超 1300 kg/m ³ 以下		$0.018~\mathrm{kg/m}^3$				
		1300 kg/m ³ 超 1600 kg/m ³ 以下		$0.020~\mathrm{kg/m}^3$				
		1600 kg/m ³ 超 1700 kg/m ³ 以下		$0.021~\mathrm{kg/m}^3$				

	校正・測定能力						
種類	校正対象	1	交正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日	
		気体ゲージ圧力	$5 \text{ kPa} \le p \le 175 \text{ kPa}$		(100+14 <i>p</i>) mPa <i>p</i> :校正圧力 [kPa]		
		A(F) VILI	175 kPa < $p \le 7000$ kPa		20 p mPa p:校正圧力 [kPa]		
	 重錘形圧力天びん	気体絶対圧力	5 kPa $\leq p \leq 175$ kPa		(400+13 <i>p</i>) mPa <i>p</i> :校正圧力 [kPa]		
	重要が圧り入いる	が圧力大いん 気体細対圧力	175 kPa < $p \le 7000$ kPa		(400+20 <i>p</i>) mPa <i>p</i> :校正圧力 [kPa]		
		液体圧力	1 MPa ≤ <i>p</i> ≤ 100 MPa		(80+24 <i>p</i> +0.081 <i>p</i> ²) Pa <i>p</i> :校正圧力 [MPa]		
		似件压力	100 MPa < p ≤ 500 MPa		(1300+11 <i>p</i> +0.12 <i>p</i> ²) Pa <i>p</i> : 校正圧力 [MPa]		
			$5 \text{ kPa} \le p \le 175 \text{ kPa}$		(100+14 p)mPa p:校正圧力 [kPa]		
		気体ゲージ圧力	175 kPa < $p \le 7000$ kPa		20 p mPa p:校正圧力 [kPa]		
			7000 kPa < $p \le 20000$ kPa		28 p mPa p:校正圧力 [kPa]	2011年11月25日	
			5 kPa $\leq p \leq 175$ kPa		(400+13 <i>p</i>) mPa <i>p</i> :校正圧力 [kPa]		
		気体絶対圧力	175 kPa < $p \le 7000$ kPa		(400+20 <i>p</i>) mPa <i>p</i> :校正圧力 [kPa]		
	高精度圧力計		7000 kPa $ kPa$		28 p mPa p:校正圧力 [kPa]		
		気体差圧 	1 Pa ≤ <i>p</i> ≤ 10 kPa	[ライン圧力 100 kPa±10 kPa (絶対圧力)]	(11+14 <i>p</i>)mPa <i>p</i> :校正圧力 [kPa]		
			$1~\mathrm{MPa} \leq p \leq 100~\mathrm{MPa}$		(80+24 <i>p</i> +0.081 <i>p</i> ²) Pa <i>p</i> :校正圧力 [MPa]		
			100 MPa < p ≤ 500 MPa		(1300+11 p+0.12 p ²) Pa p:校正圧力 [MPa]		
圧力·真空			500 MPa < p ≤ 1000 MPa		(1000+12 <i>p</i> +0.18 <i>p</i> ²) Pa <i>p</i> :校正圧力 [MPa]		
			$a \le p < 1.0 \times 10^{-3} \text{ Pa}$		0.91 %		
	スピニングローター		$a \le p < 1.0 \times 10^{-2} \text{ Pa}$	_	0.38 %		
	真空計		Pa $\leq p \leq 0.1$ Pa	_	0.35 %	_	
			$a \le p < 1.0 \text{ Pa}$	_	0.35 %	_	
			≤ p ≤ 10.0 Pa		0.32 %		
			$a \le p < 0.2 \text{ Pa}$	-	2.8 %	_	
			$a \le p < 0.4 \text{ Pa}$ $a \le p < 0.6 \text{ Pa}$	-	1.2 % 0.60 %	_	
	隔膜真空計		$\frac{1 \le p < 0.0 \text{ Fa}}{1 \le p < 0.8 \text{ Pa}}$	-	0.40 %		
			$\frac{1 \le p < 0.0 \text{ Fa}}{1 \le p < 1.0 \text{ Pa}}$	-	0.20 %	-	
			$p \le 2.0 \times 10^3 \text{ Pa}$	1	0.18 %	1	
			$a \le p < 2.0 \times 10^{-6} \text{ Pa}$		4.3 %	1	
	電離真空計		$a \le p < 3.0 \times 10^{-6} \text{ Pa}$]	3.3 %		
		$3.0 \times 10^{-6} \text{ Pa}$	$a \le p \le 1.0 \times 10^{-4} \text{ Pa}$		3.0 %	2012年5月21日	
			$a \le p \le 1.0 \times 10^{-4} \text{ Pa}$	N_2	7.2 %	1 -/4 - 4 - 5	
			$a \le p \le 1.0 \times 10^{-4} \text{ Pa}$	Ar	7.4 %		
	分圧計		$a \le p < 5.0 \times 10^{-6} \text{ Pa}$	He He	8.1 %	_	
			$a \le p \le 1.0 \times 10^{-4} \text{ Pa}$		7.4 %	-	
			$a \le p < 5.0 \times 10^{-6} \text{ Pa}$	$ H_2$	8.1 %	_	
		$1.0 \times 10^{-8} \text{ Pa m}^3/\text{s}$	$a \le p \le 1.0 \times 10^{-4} \text{ Pa}$ $a \le Q \le 2.5 \times 10^{-8} \text{ Pa m}^3/\text{s}$	Не	7.4 % 5.7 %	_	
	標準リーク	$2.5 \times 10^{-8} \text{ Pa m}^3/\text{s}$	0:リーク量) $s \le Q < 8.0 \times 10^{-8} \text{ Pa m}^3/\text{s}$	Не	4.5 %		
		$8.0 \times 10^{-8} \text{ Pa m}^3/\text{s}$	0:リーク量) $s \le Q \le 1.0 \times 10^{-6} \text{ Pa m}^3/\text{s}$	Не	3.2 %		
	標準 コンダクタンス エレメント	$1 \times 10^{-10} \text{ m}^3/\text{s}$	S: U - D 量) $S \le C \le 2 \times 10^{-9} \text{ m}^3/\text{s}$ ュンダクタンス)	N ₂ 換算値	6.3 %	-	

			校正•測定能力			8/56
種類	校正対象 (校正方法)	校正範囲		備考	拡張不確かさ (k=2)	認定年月日
		0.5 mm²/s以上 1.8 mm²/s未満	20 ℃以上 40 ℃以下		0.04 %	
		1.8 mm²/s以上 5.0 mm²/s未満	20 ℃以上 40 ℃以下		0.05 %	
		5.0 mm ² /s以上 20 mm ² /s未満	20 ℃以上 40 ℃以下		0.06 %	
		20 mm ² /s以上	20 ℃以上 40 ℃以下		0.07 %	
		150 mm ² /s未満 150 mm ² /s以上	20℃以上		0.09 %	_
		940 mm²/s未満 940 mm²/s以上	40 ℃以下 20 ℃以上		0.10 %	_
		2000 mm ² /s未満 2000 mm ² /s以上	40 ℃以下 20 ℃以上			_
動粘度	粘度計校正用標準液	14 000 mm ² /s未満	40 ℃以下 20 ℃以上		0.12 %	2013年4月26日
		14 000 mm²/s以上 52 000 mm²/s未満	40 ℃以下		0.14 %	
		52 000 mm²/s以上 500 000 mm²/s以下	20 ℃以上 40 ℃以下		0.17 %	
		0.5 mm²/s以上 1.2 mm²/s未満	100 ℃		0.05 %	
		1.2 mm ² /s以上 4.0 mm ² /s未満	100 ℃		0.05 %	
		4.0 mm ² /s以上 20 mm ² /s未満	100 ℃		0.06 %	-
		20 mm²/s以上	100 °C		0.07 %	
		40 mm²/s以下 0.5 mm²/s以上 80 mm²/s 以下	-40 °C		0.07 %	_

						9/56
種類	校正対象 (校正方法)	校正範囲		備考	拡張不確かさ (k=2)	認定年月日
		0.4 mPa·s以上 1.4 mPa·s未満	20 ℃以上 40 ℃以下		0.07 %	
		1.4 mPa·s以上 4.1 mPa·s未満	20 ℃以上 40 ℃以下		0.07 %	
		4.1 mPa·s以上 17 mPa·s未満	20 ℃以上 40 ℃以下		0.08 %	
		17 mPa·s以上 130 mPa·s未満	20 ℃以上 40 ℃以下		0.09 %	
		130 mPa·s以上 820 mPa·s未満	20 ℃以上 40 ℃以下		0.10 %	
		820 mPa·s以上 1800 mPa·s未満	20 ℃以上 40 ℃以下		0.11 %	
ماس ادار		1800 mPa·s以上 12 000 mPa·s未満	20 ℃以上 40 ℃以下		0.13 %	- 2013年4月26日
粘度	粘度計校正用標準液	12 000 mPa·s以上 46 000 mPa·s未満	20 ℃以上 40 ℃以下		0.15 %	
		46 000 mPa·s以上 450 000 mPa·s以下	20 ℃以上 40 ℃以下		0.18 %	
		0.4 mPa·s以上 1.0 mPa·s未満	100 ℃		0.07 %	
		1.0 mPa·s以上 3.2 mPa·s未満	100 ℃	0.08 %	0.08 %	
		3.2 mPa·s以上 16 mPa·s未満	100 ℃		0.08 %	
		16 mPa·s以上 32 mPa·s以下	100 ℃		0.09 %	
		0.4 mPa·s以上 72 mPa·s 以下	−40 °C		0.09 %	

		校正•測定能力					
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日		
		10 L		0.026 %			
体積	体積タンク	50 L≤ <i>V</i> ≤100 L		0.013 %	2012年12月12日		
		100 L< <i>V</i> ≤200 L		0.011 %			

<u> </u>)認定の区分:時間・周波数					11/56	
TTAT			校正·測定能力				
種類 (品目記号)	校正対象 (校正方法)				拡張不確かさ (k=2)	認定年月日	
		1 MHz					
	周波数標準器(周波数測定法)	5 MHz			1×10^{-13}		
	问仅数保华品(问仅数例足伝)	10 MHz			1×10		
		100 MHz					
	周波数標準器(時間間隔測定法)	5 MHz 10 MHz			5×10^{-14}		
					基線長 50 km	1.7×10^{-13}	
周波数		5 MHz	シングルチャンネル GPS受信機の場合 5 MHz 10 MHz マルチチャンネル GPS受信機の場合	基線長 500 km	2.4×10^{-13}	2011年11月25日	
	周波数標準器(遠隔)			基線長 1600 km	9.3×10^{-13}		
	/可仪	10 MHz		基線長 50 km	1.1×10^{-13}		
				基線長 500 km	1.4×10^{-13}		
				基線長 1600 km	4.9×10^{-13}		

1年 4二	認定の区分: 長さ及い幾何字重		校正•測定能力		
種類 	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ(k=2)	認定年月日
	安定化レーザー	周波数:178 THz~600 THz		1.4×10 ⁻¹³ (相対拡張不確かさ)	
光周波数		真空波長:500 nm~ 1684 nm		1.4×10 ⁻¹³ (相対拡張不確かさ)	2014年4月25日
	波長計	1530 nm ~ 1550 nm (通信帯 Cバンド)		0.002 pm 校正器物の分を含まず	
端度器	ステップゲージ (座標測定機及びレーザ干渉計)	1020 mm 以下	スチール製のゲージの場合	$2\sqrt{0.086^2 + (0.24 L)^2}$ μm (L は測定長さ[m])	
	ボールバー (座標測定機及びレーザ干渉計)	720 mm 以下	スチール製のゲージの場合	$2\sqrt{0.13^2 + (0.17L)^2}$ μ m $(Lは測定長さ[m])$	2012年2月8日
	ボールバー (座標測定機及び参照標準)	1020 mm 以下	スチール製のゲージの場合	$2\sqrt{0.16^2 + (0.34 L)^2}$ μ m $(Lは測定長さ[m])$	
幾何形状	ボールプレート (座標測定機及びレーザ干渉計)	560 mm × 560 mm 以下	スチール製のゲージの場合	$2\sqrt{0.2^2 + (0.28 \text{ L})^2}$ μ m $(Lは測定長さ[m])$	2013年8月8日
及いけカル	ボールプレート (座標測定機及び参照標準)	700 mm × 700 mm 以下	スチール製のゲージの場合	$2\sqrt{0.18^2 + (0.43 L)^2}$ μ m (L は測定長さ[m])	2012年2月8日
	ホールプレート (座標測定機及びレーザ干渉計)	560 mm× 560 mm 以下	低膨張ガラス製のゲージの場合	$2\sqrt{0.2^2 + (0.22 \text{ L})^2}$ μm $(L i 測定長 i [m])$	2013年8月8日
	ホールプレート (座標測定機及び参照標準)	700 mm × 700 mm 以下	低膨張ガラス製のゲージの場合	$2\sqrt{0.18^2 + (0.36 L)^2}$ μ m $(Lは測定長さ[m])$	
歯車	歯形(座標測定機) 歯すじ(座標測定機)	0.2 mm 以下 0.2 mm 以下	基礎円直径 25 mm ~ 200 mm 基準円直径 25 mm ~ 200 mm	0.52 μm 0.38 μm	
西 牛	ピッチ(座標測定機)	0.2 mm 以下	基準円直径 60 mm ~ 300 mm	単一ピッチ:0.22 μm 累積ピッチ:0.78 μm	
	段差 (測長AFM)	10 nm ~ 2.5 μm	横寸法 33 μm以下	2√(2.0×10 ⁻¹) ² + (7.2×10 ⁻⁶ L) ² nm (L nm: 段差値) (但し、校正対象の不確かさ成分は含まれていない)	2012年2月8日
表面性状	段差・深さ標準片 (触針式粗さ測定機)	0.5 μm ~ 10 μm		$2\sqrt{(3.9)^2 + (1.4 \times H)^2}$ nm $(H[\mu m]: 溝深さの呼び値)$	
	表面粗さ標準片 (触針式粗さ測定機)	0.1 μm ~ 3.0 μm		$2\sqrt{(3.5)^2 + (1.4 \times Ra)^2}$ nm $(Ra \ [\mu m] :$	
	光学式段差	0.02 μm~		表面粗さパラメータの呼び値) $2\sqrt{(0.225)^2 + (1.95 \times 10^{-3} \times L)^2}$ nm	0000 / 7 0 11 00 11
	(段差標準片) 回転精度検査用標準器:	0.3 μm	校正器物の直径	(L [nm]:段差値) 2 $\sqrt{(3.8)^2 + (2.0 \times R)^2}$ nm	2009年6月29日
真円度	回転補及恢宜用標準益: 真円度(真円度測定機)	0 μm~ 2 μm	 	(<i>R</i> [μm] :真円度の呼び値)	
			校正器物の熱膨張係数は (11.5±1)×10 ⁻⁶ /Kの範囲、標準不確かさ0.3×10 ⁻⁶ /K以下、 又は被校正器物の熱膨張係数は (9.3±0.5)×10 ⁻⁶ /Kの範囲、 標準不確かさ0.3×10 ⁻⁶ /K以下	$2\sqrt{(11.7)^2 + (11.4 \times 10^{-2} \times L)^2}$ nm $(Lはブロックゲージの呼び寸法、単位はmm)$	
		0.5 mm ∼ 250 mm	校正器物の熱膨張係数は (4.2±0.1)×10 ⁻⁶ /K の範囲、標準不確かさ 0.06×10 ⁻⁶ /K 以下	$2\sqrt{(11.7)^2 + (6.0 \times 10^{-2} \times L)^2}$ nm $(Lはブロックゲージの呼び寸法、単位はmm)$	
端度器	ブロックゲージ (レーザ干渉計)		校正器物の熱膨張係数は (0±0.5)×10 ⁻⁶ /K の範囲、標準不確かさ 0.1×10 ⁻⁶ /K 以下	$2\sqrt{(14.4)^2 + (4.6 \times 10^{-2} \times L)^2}$ nm $(Lはブロックゲージの呼び寸法、単位はmm)$	2012年2月8日
			校正器物の熱膨張係数は (11.5±1)×10 ⁻⁶ /K の範囲、標準不確かさ 0.3×10 ⁻⁶ /K 以下	$2\sqrt{(10.1)^2 + (8.5 \times 10^{-2} \times L)^2}$ nm $(Lはブロックゲージの呼び寸法、単位はmm)$	
		150 mm ∼ 1000 mm		校正器物の熱膨張係数は (0±0.5)×10 ⁻⁶ /K の範囲、標準不確かさ 0.1×10 ⁻⁶ /K 以下	$2\sqrt{(14.0)^2 + (2.8 \times 10^{-2} \times L)^2}$ nm $(Lはブロックゲージの呼び寸法、単位はmm)$

					13/56
種類 (品目番号)	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
	標準尺 (レーザ干渉計)	$L \leq 1000 \; \mathrm{mm}$		$2\sqrt{(29.1)^2 + (0.063 \times L)^2}$ nm (L は呼び寸法、単位はmm)	
線度器	一次元グレーティング (測長AFM)	23 nm \sim 8 μ m		$2\sqrt{(7.0\times10^3)^2 + (9.9\times10^6\times L)^2}$ nm $(L [nm] : ピッチ値)$	
	二次元グレーティング (測長AFM)	100 nm \sim 8 μ m		$2\sqrt{(1.8\times10^{-1})^2 + (7.5\times10^{-6}\times L)^2}$ nm $(L [nm] : ピッチ値)$	2012年2月8日
長さ測定器	光波距離計 (レーザ干渉計及び七点法)	5 m ∼ 200 m		距離比例係数:0.4×10 ⁻⁶ 加算定数:0.05 mm	
AC MACHI	干渉測長器 (レーザ干渉計)	1 m ∼ 100 m		1.7 μm	
	オートコリメータ	-1000 " $\sim +1000$ "		0.1"	
	7 1 - 7	-100 " $\sim +100$ "		0.03"	
角度	ロータリエンコーダ	$0^{\circ} \sim 360^{\circ}$	20℃	0.01"	2009年6月29日
	オートコリメータ	$-5^{\circ} \sim +5^{\circ}$	20℃	0.04"	
	多面鏡	48面まで	20℃	0.09"	
平面度	オプティカルフラット (フィゾー干渉計)	0 μm \sim 10 μm	口径 300 mm 以下	10 nm	
屈折率	三角プリズム (レーザ干渉計)	$1.51 \sim 1.52$	測定波長(真空中): 632.99 nm, 材質: BK7又は同等品, プリズムの大きさ(各辺): 40mm以上80mm以下	2.2×10^{-6}	2012年2月8日

					14/56
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
	固体 (ガラス状炭素 又は単結晶シリコン)		293.15 K以上300 K未満 300 K 以上350 K 未満 350 K 以上400 K 未満 400 K 以上450 K 未満 450 K 以上500 K 未満 500 K 以上550 K 未満 550 K 以上600 K 未満 600 K 以上650 K 未満 650 K 以上700 K 未満 750 K 以上750 K 未満 750 K 以上850 K 未満 950 K 以上850 K 未満	$2.3 \times 10^{-8} \text{ K}^{-1}$ $2.3 \times 10^{-8} \text{ K}^{-1}$ $2.2 \times 10^{-8} \text{ K}^{-1}$ $2.1 \times 10^{-8} \text{ K}^{-1}$ $2.1 \times 10^{-8} \text{ K}^{-1}$ $2.1 \times 10^{-8} \text{ K}^{-1}$ $2.0 \times 10^{-8} \text{ K}^{-1}$ $2.0 \times 10^{-8} \text{ K}^{-1}$ $2.1 \times 10^{-8} \text{ K}^{-1}$	
熱膨張容(線膨張係数)	短尺ゲージブロック		JIS B 7506で定めるブロックゲージ もしくは 同等な形状精度をもつ固体試験片 呼び寸法の範囲: 20 mm以上100 mm以下 校正温度範囲: 5 ℃以上35 ℃以下	$\left[\frac{A \times \sqrt{\alpha^2 + B^2}}{\Delta T} + C \cdot \alpha\right] \times 10^{-9} \mathrm{K}^{-1};$ $A = 4.3 + \left(\frac{5.9}{L_0 - 23}\right)^2, B = 0.38 + \frac{39}{L_0},$ $C = 0.020 + \left(\frac{6.3}{L_0}\right)^2$ 尚、 $L_0 < 40$ の場合は $A = 4.3$ とする。 ここで、 α および L_0 は校正器物の 熱態張率および 20 °C における 基準長であり、単位は α が $10^{-6} \mathrm{K}^{-1}, L_0$ がmmである。 また、 Δ T は校正時の温度変化量であり単位は K である。	2013年4月26日

と止事業者の認定の	区分:音響•超音波•振動	11	Marine Ala I		15/
		校正•	測定能力	1	_
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
	標準マイクロホン, I 形マイクロホン		1 Hz ≦ <i>f</i> ≦ 2 Hz	0.2 dB	
	(レーザピストンホン法)		2 Hz < f≦ 20 Hz	0.1 dB	
			20 Hz ≦ <i>f</i> ≦ 4 kHz	0.04 dB	
	標準マイクロホン, I 形マイクロホン		4 kHz <f≦ 8="" khz<="" td=""><td>0.05 dB</td><td></td></f≦>	0.05 dB	
	(音響カプラを用いた相互校正法)		8 kHz < <i>f</i> ≦ 10 kHz	0.15 dB	
音圧感度			10 kHz $<$ f ≤ 12.5 kHz	0.17 dB	
			20 Hz ≤ f< 25 Hz	0.07 dB	
			$25 \text{ Hz} \le f < 31.5 \text{ Hz}$	0.06 dB	
	標準マイクロホン,Ⅱ形マイクロホン		$31.5 \text{ Hz} \leq f < 40 \text{ Hz}$	0.05 dB	
	(音響カプラを用いた相互校正法)		40 Hz ≦ <i>f</i> ≦ 12.5 kHz	0.04 dB	
			12.5 kHz < f≦ 16 kHz	0.05 dB	
			16 kHz < <i>f</i> ≦ 20 kHz	0.12 dB	
	計測用マイクロホン,		$20 \text{ Hz} \le f \le 6.3 \text{ kHz}$	0.2 dB	2013年4月26
	Ⅰ 形マイクロホン		6.3 kHz < <i>f</i> ≦ 8 kHz	0.3 dB	
	(自由音場での比較校正法)		8 kHz < <i>f</i> ≦ 12.5 kHz	0.4 dB	
ملہ دلے 11 ملہ	計測用マイクロホン,		$20 \text{ Hz} \le f \le 6.3 \text{ kHz}$	0.2 dB	
音場感度	Ⅱ形マイクロホン		6.3 kHz < <i>f</i> ≦ 8 kHz	0.3 dB	
	(自由音場での比較校正法)		8 kHz < <i>f</i> ≦ 20 kHz	0.4 dB	
	計測用マイクロホン, WS3形マイクロホン (自由音場での相互校正法)		20 kHz ≦ <i>f</i> ≦ 100 kHz	1.0 dB	
音圧レベル	音響校正器		250 Hz	0.08 dB	
日圧レゾンル	日管仪止品		1 kHz	0.08 dB	7
دا به ا ن			20 Hz ≤ <i>f</i> ≤ 2 kHz	0.2 dB	7
自由音場 ノスポンスレベル	サウンドレベルメータ		2 kHz < f≦ 6.3 kHz	0.3 dB	
レスハンヘレ・ハレ			6.3 kHz < f ≤ 12.5 kHz	0.5 dB	7

					16/56
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
			0.1 Hz	6 %	
			$0.125~\mathrm{Hz}\sim0.16~\mathrm{Hz}$	5 %	
			0.2 Hz \sim 0.315 Hz	3 %	
			0.4 Hz \sim 0.63 Hz	2 %	
			$0.8~{ m Hz}\sim~1~{ m Hz}$	1.5 %	
	17 7 14 李松林 24 24 24 24 24 24 24 24 24 24 24 24 24		$1.25~\mathrm{Hz}\sim2.5~\mathrm{Hz}$	1 %	
	レーザ干渉式振動測定装置 (電圧感度)		$3.15~\mathrm{Hz}\sim 8~\mathrm{Hz}$	0.5 %	
	(电/工机火)		10 Hz \sim 80 Hz	0.3 %	
振動加速度 振動加速度			100 Hz \sim 4 kHz	0.4 %	
1灰野//川/区/交			5 kHz	0.5 %	2013年4月26日
			6.3 kHz	0.8 %	
			8 kHz	0.5 %	
			10 kHz	0.5 %	
			20 Hz \sim 4 kHz	0.4 %	
	4日刊1.0 トマ →º		5 kHz	0.5 %	
	振動ピックアップ (電荷感度)		6.3 kHz	0.8 %	
	(电内弧火)		8 kHz	0.5 %	
			10 kHz	0.5 %	
衝撃加速度	振動加速度計		$200~\mathrm{m/s^2}\sim 500~\mathrm{m/s^2}$	1.0%	
	(電圧感度)		$500 \text{ m/s}^2 \sim 5000 \text{ m/s}^2$	0.8%	

以正争未有の認力				校正測定能力			17/50
種類	111.5	校	正範囲	tu. Ia	拡張不確定		- - 認定年月日
1年7月	校正対象	公称容量	周波数	備考	キャパシタンス	ンタンス 損失 角	
		10 mF	1 kHz		0.14 μF/F	7.6 µrad	
		10 pF	1.592 kHz		0.14 μF/F	12 μrad	
		100 mF	1 kHz		0.076 μF/F	7.6 µrad	
		100 pF	1.592 kHz		0.076 μF/F	12 μrad	
		1000 pF	1 kHz		0.072 μF/F	7.6 µrad	
		1000 pr	1.592 kHz		0.072 μF/F	12 μrad	
キャパシタンス	標準キャパシタ	0.01 μF	1 kHz		0.76 μF/F	12 μrad	2011年11月25日
		0.01 μΓ	1.592 kHz		0.96 μF/F	12 μrad	
		0.1	1 kHz		0.79 μF/F	12 μrad	
		0.1 μF	1.592 kHz		0.99 μF/F	12 μrad	
		1	1 kHz		1.4 μF/F	12 μrad	
		1 μF	1.592 kHz		1.5 μF/F	12 μrad	
		10 μF	1 kHz		4.0 μF/F	13 μrad	

				な正測定能力			10/00
種類		校正	範囲		拡張不確	かさ(k=2)	認定年月日
一	校正対象	公称抵抗	周波数	備考	抵抗	位相角	
		10 k Ω	10 kHz		$1.4~\mu\Omega/\Omega$	76 μ rad	
		10 Ω	1 kHz		8.0 μΩ/Ω	9.2 µrad	
交流抵抗	交流抵抗器	100 Ω	1 kHz		$1.6~\mu\Omega/\Omega$	7.8 µrad	- 2011年11月25日
又//16783//6	文机的数分记值	1 kΩ	1 kHz		$0.10~\mu\Omega/\Omega$	7.6 µrad	2011年11月20日
		10 kΩ	1 kHz		$0.060~\mu\Omega/\Omega$	7.6 µrad	
		100 kΩ	1 kHz		$0.064~\mu\Omega/\Omega$	7.6 µrad	

	-	المالية المالية			19/56
		校山	E·測定能力		
種類	校正対象	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
		1 Ω	QHR起点	$0.068~\mu\Omega/\Omega$	
		1 52	1 Ω抵抗器群起点	$0.10~\mu\Omega/\Omega$	
		10 Ω	1 Ω抵抗器群起点	$0.10~\mu\Omega/\Omega$	
	標準抵抗器	100 Ω	1 Ω抵抗器群起点	$0.11~\mu\Omega/\Omega$	
		1 kΩ	1 Ω抵抗器群起点	$0.13~\mu\Omega/\Omega$	
		10 kΩ	QHR起点	$0.058~\mu\Omega/\Omega$	
		10 K \$2	1 Ω抵抗器群起点	$0.16~\mu\Omega/\Omega$	
		1 m Ω		$1.5~\mu\Omega/\Omega$	
直流抵抗	標準抵抗器	10 m Ω	最大電力 1 mW	0.76 μΩ/Ω	2010年5月10日
		100 m Ω		$0.18~\mu\Omega/\Omega$	
		1 ΜΩ		$0.64~\mu\Omega/\Omega$	
		10 M Ω		$1.1~\mu\Omega/\Omega$	
		$100~\mathrm{M}\Omega$		$1.9~\mu\Omega/\Omega$	
	標準抵抗器	$1~\mathrm{G}\Omega$		$3.2~\mu\Omega/\Omega$	
		$10~\mathrm{G}\Omega$		$6.2~\mu\Omega/\Omega$	
		100 G Ω]	$12 \mu\Omega/\Omega$	
		1 ΤΩ]	$23 \mu\Omega/\Omega$	

		校正・測定能力					
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日		
		公称電圧: 1 V		7 nV			
直流•低周波	電圧発生装置	公称電圧: 1.018 V		7 nV	2012年12月12日		
		公称電圧: 10 V		30 nV			

			校正•測定能	力		
種類	校正	範囲	備考	拡張不確かさ($(k=2) (\times 10^{-8})$	認定年月日
	周波数	公称比		同相成分	直角相成分	
		0.9		0.27	0.36	
		0.8		0.25	0.33	
		0.7		0.23	0.30	
		0.6		0.20	0.27	
		0.5	0.1ステップ	0.18	0.24	
		0.4		0.16	0.21	
		0.3		0.13	0.17	
		0.2		0.10	0.14	
		0.1		0.07	0.09	
		0.95		0.29	0.38	
		0.90		0.27	0.36	
		0.85		0.26	0.34	
		0.80		0.24	0.32	
誘導分圧器	50 - 60 Hz	0.75		0.23	0.30	2011年11月25日
两等刀压船	50 - 00 HZ	0.70		0.22	0.29	
		0.65		0.20	0.27	
		0.60		0.19	0.25	
		0.55		0.17	0.23	
		0.50	0.05ステップ	0.16	0.21	
		0.45		0.15	0.20	
		0.40		0.14	0.18	
		0.35		0.12	0.16	
		0.30	_	0.11	0.15	
		0.25	_	0.10	0.13	
		0.20	_	0.09	0.12	
		0.15		0.08	0.11	
		0.10		0.07	0.10	
		0.05		0.07	0.09	

			校正・測定能	· · · · · · · · · · · · · · · · · · ·		22/56
種類	校』	E範囲	備考	拡張不確かさ	$(k=2) (\times 10^{-8})$	認定年月日
	周波数	公称比	一	同相成分	直角相成分	
		0.9		0.27	0.37	
		0.8		0.25	0.34	
		0.7		0.23	0.31	
		0.6		0.20	0.28	
		0.5	0.1ステップ	0.18	0.25	
		0.4		0.16	0.22	
		0.3		0.13	0.18	
		0.2		0.10	0.14	
		0.1		0.07	0.10	
		0.95		0.29	0.39	
		0.90		0.27	0.37	
		0.85		0.26	0.35	
		0.80		0.24	0.33	
誘導分圧器	120 Hz	0.75		0.23	0.31	2011年11月25日
₩7 -1- 77/11-11F	120 112	0.70		0.22	0.29	2011-11/120 H
		0.65		0.20	0.27	
		0.60		0.19	0.25	
		0.55		0.17	0.24	
		0.50	0.05ステップ	0.16	0.22	
		0.45		0.15	0.20	
		0.40		0.14	0.18	
		0.35		0.12	0.17	
		0.30		0.11	0.15	
		0.25		0.10	0.13	
		0.20		0.09	0.12	
		0.15		0.08	0.11	
		0.10		0.07	0.10	
ı		0.05		0.07	0.09	

			校正•測定能力			23/56
種類	校正	範囲		拡張不確かさ	$(k=2) (\times 10^{-8})$	認定年月日
	周波数	公称比	備考	同相成分	直角相成分	
		1.1		0.10	0.16	
		0.9		0.28	0.32	
		0.8		0.26	0.30	
		0.7		0.24	0.28	
		0.6		0.22	0.28	
	200 Hz	0.5		0.20	0.28	
		0.4		0.20	0.24	
		0.3		0.16	0.20	
		0.2		0.12	0.14	
		0.1		0.08	0.10	
		-0.1		0.08	0.10	
		1.1		0.04	0.10	
		0.9		0.22	0.32	
		0.8		0.16	0.30	
		0.7		0.18	0.28	
		0.6		0.12	0.28	
誘導分圧器	400 Hz	0.5		0.10	0.26	2011年11月25日
		0.4		0.10	0.22	
		0.3		0.08	0.20	
		0.2		0.06	0.16	
		0.1		0.04	0.10	
		-0.1		0.04	0.10	
		1.1		0.08	0.20	
		0.9		0.36	0.78	
		0.8		0.32	0.72	
		0.7		0.30	0.66	
		0.6		0.26	0.62	
	1 kHz	0.5		0.24	0.54	
		0.4		0.20	0.46	
		0.3		0.16	0.38	
		0.2		0.14	0.30	
		0.1		0.08	0.20	
		-0.1		0.08	0.20	

			校正•測定律	能力		24/54
種類 上	校正	 範囲		拡張不確かさ	$(k=2) (\times 10^{-8})$	— 認定年月日
	周波数	公称比	備考	同相成分	直角相成分	
		1.1		1.40	1.98	
		0.9		5.60	8.12	
		0.8		5.14	7.60	
		0.7		4.66	6.80	
		0.6		4.18	6.20	
	10 kHz	0.5		3.70	5.48	
		0.4		3.18	4.70	
		0.3		2.66	3.98	
		0.2		2.08	3.10	
		0.1		1.40	1.98	
誘導分圧器		-0.1		1.40	1.96	2011年11月25日
1/1/ 1/ /1/11/11/11		1.1		73	37	
		0.9		282	143	
		0.8		259	132	
		0.7		237	120	
		0.6		214	108	
	100 kHz	0.5		191	98	
		0.4		165	87	
		0.3		138	72	
		0.2		108	55	
		0.1		73	37	
		-0.1		73	37	

	校正測定能力						
種類	括約	校正筆	2囲		拡張不確かさ(k=2)	認定年月日	
校正対象	公称インダクタンス	周波数	備考	インダクタンス			
		10 mH	1 kHz		33 μH/H		
インダクタンス	標準インダクタ	10 1111 1	1.592 kHz		28 μH/H	2011年11月25日	
		100 mH	1 kHz		28 μH/H		

校正測定能力										
種類校正対象			校正範	I <u></u> 囲					かさ(k=2)	認定年月日
	校正対象	入力電流	比	周波数	備考	同相成分	直角相成分			
交流電流比	電流比較器	5 A	1-100	45 Hz ∼ 120 Hz		0.8×10^{-6}	0.8×10^{-6}	2011年11月25日		
文/加电/加比	电机儿牧硷	50 A	1-100	45 Hz ∼ 120 Hz		0.8×10^{-6}	0.8×10^{-6}	2011平11月25日		

		校正•測定能力			27/56
種類	校正対象	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
		減衰器:20 dB以下		0.002 dB	
		減衰器:40 dB以下		0.005 dB	1
	可変減衰器周波数: 10 MHz 以上 ~ 12 GHz 以下	減衰器:60 dB以下		0.007 dB	
		減衰器:80 dB以下		0.008 dB	
		減衰器:100 dB以下		0.020 dB	
		減衰器:20 dB以下		0.005 dB	
	可変減衰器周波数: 12 GHz 超 ~18 GHz 以下	減衰器:40 dB以下		0.008 dB	
	15 6112 /62 16 6112 6/1	減衰器:60 dB以下		0.010 dB	
		減衰器:20 dB以下		0.005 dB	
	可変減衰器周波数: 18 GHz 超 ~26.5 GHz 以下	減衰器:40 dB以下		0.009 dB	
		減衰器:60 dB以下		0.020 dB	
		減衰器:20 dB以下		0.006 dB	
	可変減衰器周波数: 26.5 GHz 超 ~40 GHz 以下	減衰器:40 dB以下		0.012 dB	
		減衰器:60 dB以下		0.040 dB	
		減衰器:40 dB以下(挿入損含む)		0.002 dB	
	ピストン減衰器周波数:30 MHz	減衰器:60 dB以下(挿入損含む)		0.005 dB	
高周波減衰器		減衰器:80 dB以下(挿入損含む)		0.008 dB	2010年3月16日
同问仅例农品		減衰器:100 dB以下(挿入損含む)		0.020 dB	2010平3月10日
		減衰器:20 dB以下		0.008 dB	
	固定減衰器周波数:	減衰器:40 dB以下		0.009 dB	
	10 MHz 以上 ~ 18 GHz 以下	減衰器:60 dB以下		0.012 dB	
		減衰器:80 dB以下		0.068 dB	
		減衰器:20 dB以下		0.010 dB	
	固定減衰器周波数: 18 GHz 超~ 40 GHz 以下	減衰器:40 dB以下		0.016 dB	
	10 0112 / 0112 / 0112	減衰器:60 dB以下		0.040 dB	
)	減衰器:20 dB以下		0.005 dB	
	導波管可変減衰器周波数: 18 GHz 以上 ~ 26.5 GHz 以下	減衰器:40 dB以下		0.010 dB	
	10 0112 5(12	減衰器:60 dB以下		0.025 dB	
)	減衰器:20 dB以下		0.005 dB	
	導波管可変減衰器周波数: 26.5 GHz 超 ~ 40 GHz 以下	減衰器:40 dB以下		0.011 dB	
		減衰器:60 dB以下		0.041 dB	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	減衰器:20 dB以下		0.008 dB	
	導波管可変減衰器周波数: 50 GHz 以上 ~ 75 GHz 以下	減衰器:40 dB以下		0.023 dB	
	y. <u></u>	減衰器:60 dB以下		0.058 dB	

			 E•測定能力			28/56
種類		校正範圍		III. Ia	拡張不確かさ	認定年月日
	校正対象	雑音温度	周波数	備考	(k=2)	
			2 GHz		3.1 %	
			3 GHz		2.6 %	
			4 GHz		3.3 %	
			5 GHz		3.2 %	
			6 GHz		0.7.0/	
			7 GHz		2.7 %	
			8 GHz		3.0 %	
			9 GHz		2.5 %	
		150 K以上200 K未満	10 GHz		2.5 %	
			11 GHz		2.6 %	
			12 GHz		2.0 %	
			13 GHz		2.9 %	
			14 GHz		2.8 %	
			15 GHz		2.0 %	
			16 GHz		3.7 %	
			17 GHz		3.5 %	
高周波雑音	高周波雑音発生装置		18 GHz		3.6 %	2010年3月16日
円 /円 1/文 不正 日	同/可以作日元上衣臣		2 GHz		2.0 %	2010-3/110 [
			3 GHz		1.6 %	
			4 GHz		2.2 %	
			5 GHz		2.2 //	
			6 GHz		1.7 %	
			7 GHz			
			8 GHz		1.9 %	
			9 GHz			
		200 K以上2000 K未満	10 GHz	1.5 %		
			11 GHz		1.0 //	
			12 GHz			
			13 GHz		1.8 %	
			14 GHz			
			15 GHz		1.7 %	
			16 GHz		2.5 %	
			17 GHz		2.4 %	
			18 GHz		2.5 %	

		校正	•測定能力			237 00
種類	校正対象	校正範囲		描表 拡張不確 (7-2)		認定年月日
	(X)正 X) 家	雑音温度	周波数	1用 行	(k=2)	
			2 GHz		2.5%	
			3 GHz		2.0 %	
			4 GHz		2.8 %	
			5 GHz		2.7 %	
			6 GHz		2.1 %	
			7 GHz		2.1 /0	
			8 GHz		2.4 %	
			9 GHz		1.8 %	
高周波雑音	高周波雑音発生装置	2000 K以上12000 K以下	10 GHz		1.0 %	2010年3月16日
			11 GHz		1.9 %	
			12 GHz		1.9 %	
			13 GHz		2.3 %	
			14 GHz		2.2 %	
			15 GHz		2.1 %	
			16 GHz		3.2 %	
			17 GHz		3.0 %	
			18 GHz		3.1 %	

		t			30/56				
種類	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日				
	サーミスタマウント	サーミスタマウントの校正係数: 0.9~1 レベル: 0.5 V	周波数:10 MHz以上100 MHz未満	0.30 %					
高周波電圧		y (2/2 () 2 (サーミスタマリント	サーミスタマリント	y		サーミスタマウントの校正係数: 0.9~1 レベル: 0.5 V	周波数:100 MHz以上 1 GHz以下	0.60 %
	高周波電圧計	レベル: 0.5 V	周波数:10 MHz以上100 MHz未満	0.0016 V					
	同月似电压引	レベル: 0.5 V	周波数:100 MHz以上1 GHz以下	0.0070 V					
			周波数:10 MHz以上14 GHz以下	1.0 %					
		校正係数:0.8~1	周波数:14 GHz超え19 GHz以下	1.1 %					
		レベル:1 mW	周波数:19 GHz超之25 GHz以下	1.3 %					
			周波数:25 GHz超え40 GHz以下	2.4 %					
	同軸2.9 mm 高周波電力計		周波数:10 MHz以上20 MHz以下	1.0 %					
	间州议电刀可	校正係数:0.8~1 レベル:10 mW	周波数:20 MHz超え13 GHz以下	0.6 %					
			周波数:13 GHz超え19 GHz以下	1.0 %					
			周波数:19 GHz超え25 GHz以下	1.2 %					
			周波数:25 GHz超え40 GHz以下 2.2 %]				
			周波数:10 MHz	0.35 % 又は常用標準器による 校正の場合 0.40 %					
高周波電力			周波数:10 MHz超え6 GHz以下	校正方法によらず 0.40 %	2010年3月16日				
		校正係数:0.9~1 レベル:1 mW	周波数:6 GHz超之11 GHz以下	校正方法によらず 0.60 %	1				
	同軸7 mm		周波数:11 GHz超え13 GHz以下	校正方法によらず 0.70 %					
	高周波電力計		周波数:13 GHz超え16 GHz以下	校正方法によらず 1.00 %					
			周波数:16 GHz超え18 GHz以下	校正方法によらず 1.20 %					
			周波数:10 MHz以上6 GHz以下	0.34 %					
		校正係数:0.9~1	周波数:6 GHz超之11 GHz以下	0.40 %					
		レベル:10 mW	周波数:11 GHz超え13 GHz以下	0.60 %					
			周波数:13 GHz超之18 GHz以下	1.00 %					

			校正•測定能力	<u></u>		31/56
種類			(X正*例是能)	'J	世電で強みや	】
1里/貝	校正対象	校正範囲		備考(校正条件等)	拡張不確かさ (<i>k</i> =2)	
			0.0以上0.1未満	周波数:30 kHz以上 500 kHz未満	$0.0060 \sim 0.0084$	
			, , , , , ,	周波数:500 kHz以上 30 MHz以下	$0.0060 \sim 0.0061$	
			0.1以上0.3未満	周波数:30 kHz以上 500 kHz未満	$0.0061 \sim 0.0086$	
		 	0.15/\0.0/\tag{\tag{\tag{1}}	周波数:500 kHz以上 30 MHz以下	$0.0061 \sim 0.0065$	
		DATI VINSA	0.3以上0.5未満	周波数:30 kHz以上 500 kHz未満	$0.0065 \sim 0.0091$	
			O.O.O. T.O.O. KINA	周波数:500 kHz以上 30 MHz以下	$0.0065 \sim 0.0075$	
			0.5以上1.0以下	周波数:30 kHz以上 500 kHz未満	$0.0075 \sim 0.0137$	
			0.5% 1.0%	周波数:500 kHz以上 30 MHz以下	$0.0075 \sim 0.0126$	
		散乱パラメータ (伝送特性が0のときの 反射特性)	0.1以下	周波数:40 MHz以上 2 GHz未満	$0.0013 \sim 0.0016$ $0.74^{\circ} \sim 180^{\circ}$	
			0.12/	周波数:2 GHz以上 18 GHz以下	$0.0014 \sim 0.0028$ $0.80^{\circ} \sim 180^{\circ}$	2010年3月16日
			0.1+77 > 0.0 N T	周波数:40 MHz以上 2 GHz未満	$0.0013 \sim 0.0017$ $0.29^{\circ} \sim 0.87^{\circ}$	
	7 mm 同軸		0.1超え0.3以下 -	周波数:2 GHz以上 18 GHz以下	$0.0014 \sim 0.0031$ $0.30^{\circ} \sim 1.60^{\circ}$	
高周波インピーダンス	インピーダンス素子		0.3超之0.5以下 -	周波数:40 MHz以上 2 GHz未満	$0.0015 \sim 0.0038$ $0.23^{\circ} \sim 0.32^{\circ}$	
				周波数:2 GHz以上 18 GHz以下	$0.0016 \sim 0.0037$ $0.23^{\circ} \sim 0.59^{\circ}$	
			0.5超之1.0以下 -	周波数:40 MHz以上 2 GHz未満	$0.0020 \sim 0.0035$ $0.20^{\circ} \sim 0.24^{\circ}$	
				周波数:2 GHz以上 18 GHz以下	$0.0020 \sim 0.0062$ $0.20^{\circ} \sim 0.43^{\circ}$	
			1.0	周波数:40 MHz以上 0.5 GHz未満	$0.0022 \sim 0.0025$ $0.13^{\circ} \sim 0.14^{\circ}$	
			1.0	周波数:0.5 GHz以上 18 GHz以下	$0.0022 \sim 0.0036$ $0.13^{\circ} \sim 0.21^{\circ}$	
			0.1以上1.0去港	周波数:40 MHz以上 0.5 GHz未満	$1.9 \times 10^{-4} \sim 0.0025$ $0.11^{\circ} \sim 0.14^{\circ}$	
		散乱パラメータ	0.1以上1.0未満 -	周波数:0.5 GHz以上 18 GHz以下	$1.8 \times 10^{-4} \sim 0.0036$ $0.10^{\circ} \sim 0.21^{\circ}$	
		(反射特性が0のときの 伝送特性)	0.011/1.1-01	周波数:40 MHz以上 0.5 GHz未満	$2.5 \times 10^{-5} \sim 2.1 \times 10^{-4}$ $0.11^{\circ} \sim 0.56^{\circ}$	
			0.01以上0.1未満	周波数:0.5 GHz以上 18 GHz以下	$2.4 \times 10^{-5} \sim 3.7 \times 10^{-4}$ $0.11^{\circ} \sim 0.58^{\circ}$	- - - -
			0.001 1.0.01 + 1.	周波数:40 MHz以上 0.5 GHz未満	$1.7 \times 10^{-4} \sim 9.7 \times 10^{-5}$ $0.15^{\circ} \sim 5.45^{\circ}$	
			0.001以上0.01未満 -	周波数:0.5 GHz以上 18 GHz以下	$1.5 \times 10^{-5} \sim 0.0036$ $0.14^{\circ} \sim 5.48^{\circ}$	

				<u></u>		32/56
種類				備考(校正条件等)	拡張不確かさ	」 認定年月日
12/9	校正対象	校正筆	校正範囲		(k=2)	#472 741.
			0.0以上0.1未満	周波数:30 kHz以上 100 kHz未満	0.0077	
				周波数:100 kHz以上 30 MHz以下	0.0077	
			0.1以上0.3未満 -	周波数:30 kHz以上 100 kHz未満	0.0077	
		 	0.1%_L0.0/Nipi	周波数:100 kHz以上 30 MHz以下	0.0077	
		(XA) VII 3A	0.3以上0.5未満	周波数:30 kHz以上 100 kHz未満	$0.0077 \sim 0.0080$	
			0103/122010/10114	周波数:100 kHz以上 30 MHz以下	$0.0077 \sim 0.0079$	
			0.5以上1.0以下 -	周波数:30 kHz以上 100 kHz未満	$0.0079 \sim 0.0118$	
			0.0%_1.0%	周波数:100 kHz以上 30 MHz以下	$0.0079 \sim 0.0114$	
		N型50 Ω同軸 /ピーダンス素子 (伝送特性が0のときの 反射特性)	0.1以下	周波数:40 MHz以上 1.6 GHz未満	$0.0027 \sim 0.0035$ $1.62^{\circ} \sim 180^{\circ}$	-
			0.157	周波数:1.6 GHz	$0.0027 \sim 0.005$	
				以上18 GHz以下 1.52° ~ 180° 周波数:40 MHz以上 0.0029 ~ 0.0037		
			0.1超之0.3以下 - 0.3超之0.5以下 -		4	
				1.6 GHz未満	$0.59^{\circ} \sim 1.98^{\circ}$	- 2010年3月16日
				周波数:1.6 GHz以上	$0.0027 \sim 0.0055$	
高周波インピーダンス				18 GHz以下	$0.57^{\circ} \sim 2.83^{\circ}$	
	インピーグング糸丁			周波数:40 MHz以上 1.6 GHz未満	$0.0030 \sim 0.0041$	
					$0.41^{\circ} \sim 0.70^{\circ}$	
				周波数:1.6 GHz以上 18 GHz以下	$0.0030 \sim 0.0066$ $0.41^{\circ} \sim 1.05^{\circ}$	
				周波数:40 MHz以上 1.6 GHz未満 周波数:1.6 GHz以上 18 GHz以下	$0.41^{\circ} \sim 1.05^{\circ}$ $0.0036 \sim 0.0062$	
			0.5超え1.0以下 -		$0.32^{\circ} \sim 0.47^{\circ}$	
					$0.0036 \sim 0.0109$	-
					$0.34^{\circ} \sim 0.76^{\circ}$	1
				 周波数:40 MHz	$0.0035 \sim 0.0036$	1
				以上0.5 GHz未満	0.20° ~ 0.21°	1
			1.0	周波数:0.5 GHz	$0.0036 \sim 0.0078$	
				以上18 GHz以下	$0.20^{\circ} \sim 0.45^{\circ}$	
				周波数:40 MHz以上 0.5 GHz未満	$3.2 \times 10^{-4} \sim 0.0036$ $0.18^{\circ} \sim 0.21^{\circ}$	
		散乱パラメータ	0.1以上1.0未満 -		$3.3 \times 10^{-4} \sim 0.0079$ $0.18^{\circ} \sim 0.45^{\circ}$	- - - - -
		(反射特性が0のときの 伝送特性)		周波数:40 MHz以上 0.5 GHz未満	$3.5 \times 10^{-5} \sim 3.3 \times 10^{-4}$ $0.18^{\circ} \sim 0.57^{\circ}$	
			0.01以上0.1未満	周波数:0.5 GHz以上 18 GHz以下	$3.5 \times 10^{-5} \sim 7.9 \times 10^{-4}$ $0.19^{\circ} \sim 0.71^{\circ}$	
				周波数:40 MHz以上 0.5 GHz未満	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
			0.001以上0.01未満 -	周波数:0.5 GHz以上 18 GHz以下	$0.21^{\circ} \sim 5.45^{\circ}$ $1.5 \times 10^{-5} \sim 1.2 \times 10^{-4}$ $0.20^{\circ} \sim 5.49^{\circ}$	-
				10 011/2/	0.20- ~ 0.49~	<u> </u>

			校正・測定能力	カ		33/56
種類	校正対象	校正範	5囲	備考(校正条件等)	拡張不確かさ (<i>k</i> =2)	認定年月日
			0.1017	周波数:40 MHz以上 1 GHz未満	$0.0033 \sim 0.0092$ $1.87^{\circ} \sim 180^{\circ}$	-
			0.1以下	周波数:1 GHz以上 3 GHz以下	$0.0033 \sim 0.0091$ $1.87^{\circ} \sim 180^{\circ}$	
				────────────────────────────────────	$0.0033 \sim 0.0092$ $0.67^{\circ} \sim 5.25^{\circ}$	-
		散乱パラメータ	0.1超え0.3以下	周波数:1 GHz以上 3 GHz以下	$0.0033 \sim 0.0091$	-
		(伝送特性が0のときの 反射特性)		周波数:40 MHz以上	$0.67^{\circ} \sim 5.22^{\circ}$ $0.0035 \sim 0.0094$	-
			0.3超え0.5以下	1 GHz未満 周波数:1 GHz以上	$0.46^{\circ} \sim 1.76^{\circ}$ $0.0035 \sim 0.0094$	
			0.5超え1.0以下 -	3 GHz以下 ————————————————————————————————————	$0.46^{\circ} \sim 1.76^{\circ}$ $0.0040 \sim 0.103$	
				1 GHz未満 周波数:1 GHz以上	$0.34^{\circ} \sim 1.08^{\circ}$ $0.0040 \sim 0.105$	1
高周波インピーダンス	N型75 Ω同軸 インピーダンス素子			3 GHz以下	$0.34^{\circ} \sim 1.08^{\circ}$	- 2010年3月16日
	インに・グング糸丁		1.0	周波数:40 MHz 以上1 GHz未満 周波数:1 GHz以上 3 GHz以下	$0.0035 \sim 0.0037$ $0.20^{\circ} \sim 0.21^{\circ}$	
					$0.0036 \sim 0.0039$ $0.21^{\circ} \sim 0.23^{\circ}$	
				周波数:40 MHz以上 1 GHz未満	$0.00033 \sim 0.0037$ $0.18^{\circ} \sim 0.21^{\circ}$	
		散乱パラメータ	0.1以上1.0未満	周波数:1 GHz以上 3 GHz以下	$0.00034 \sim 0.0039$ $0.19^{\circ} \sim 0.23^{\circ}$	-
		(反射特性が0のときの 伝送特性)			$0.000062 \sim 0.00048$ $0.19^{\circ} \sim 2.03^{\circ}$	-
			0.01以上0.1未満	周波数:1 GHz以上 3 GHz以下	$0.000071 \sim 0.00039$ $0.19^{\circ} \sim 0.60^{\circ}$	- - -
				周波数:40 MHz以上 1 GHz未満	$0.19^{\circ} - 0.00^{\circ}$ $0.000053 \sim 0.00035$ $0.35^{\circ} \sim 20.64^{\circ}$	
			0.001以上0.01未満	周波数:1 GHz以上 3 GHz以下	$0.000063 \sim 0.00104$ $0.41^{\circ} \sim 5.59^{\circ}$	-

			校正•測定能			34/56
種類	校正対象	校正筆		備考(校正条件等)	拡張不確かさ (<i>k</i> =2)	認定年月日
			0.0以1.0.1 大进	周波数:30 kHz以上 500 kHz未満	$0.0092 \sim 0.0105$	
		F 5 L 65 341.	0.0以上0.1未満	周波数:500 kHz以上 90 MHz以下	$0.0084 \sim 0.0088$	
			0.1以上0.3未満 -	周波数:30 kHz以上 500 kHz未満	$0.0092 \sim 0.0106$	
				周波数:500 kHz以上 90 MHz以下	$0.0083 \sim 0.0088$	
		反射係数	0.3以上0.5未満	周波数:30 kHz以上 500 kHz未満	$0.0093 \sim 0.0110$	
			0.0岁4上0.07代间	周波数:500 kHz以上 90 MHz以下	$0.0082 \sim 0.0086$	
			0.5以上1.0以下	周波数:30 kHz以上 500 kHz未満	$0.0097 \sim 0.0156$	
			3.33, 22.133, 1	周波数:500 kHz以上 90 MHz以下	$0.0082 \sim 0.0123$	
				周波数:100 MHz以上 1 GHz未満	$0.0030 \sim 0.0035$ $1.77^{\circ} \sim 180^{\circ}$	
			0.1以下	周波数:1 GHz以上 6.5 GHz未満	$0.0035 \sim 0.0042$ $2.03^{\circ} \sim 180^{\circ}$	
				周波数:6.5 MHz以上 33 GHz以下	$0.0035 \sim 0.0061$ $2.01^{\circ} \sim 180^{\circ}$	
				周波数:100 MHz以上 1 GHz未満	$0.0030 \sim 0.0038$ $0.63^{\circ} \sim 2.04^{\circ}$	
		散乱パラメータ (伝送特性が0のときの 反射特性)	0.1超之0.3以下	周波数:1 GHz以上 6.5 GHz未満	$0.0035 \sim 0.0044$ $0.73^{\circ} \sim 2.38^{\circ}$	
高周波インピーダンス	3.5 mm 同軸 インピーダンス素子			周波数:6.5 MHz以上 33 GHz以下	$0.0035 \sim 0.0068$ $0.74^{\circ} \sim 3.51^{\circ}$	- 2010年3月16日
	イグに グラバ赤 1			周波数:100 MHz以上 1 GHz未満	$0.0033 \sim 0.0044$ $0.45^{\circ} \sim 0.73^{\circ}$	
				周波数:1 GHz以上 6.5 GHz未満	$0.0038 \sim 0.0049$ $0.49^{\circ} \sim 0.84^{\circ}$	<u>-</u> - -
				周波数:6.5 MHz以上 33 GHz以下	$0.0039 \sim 0.0081$ $0.52^{\circ} \sim 1.30^{\circ}$	
			- 0.5超え1.0以下	周波数:100 MHz以上 1 GHz未満	$0.0039 \sim 0.0068$ $0.36^{\circ} \sim 0.50^{\circ}$	
				周波数:1 GHz以上 6.5 GHz未満	$0.0043 \sim 0.0073$ $0.38^{\circ} \sim 0.56^{\circ}$	-
				周波数:6.5 MHz以上 33 GHz以下	$0.0045 \sim 0.0133$ $0.42^{\circ} \sim 0.93^{\circ}$ $0.0036 \sim 0.0037$	
			1.0	周波数:100 MHz以上 1 GHz未満 周波数:1 GHz以上	$0.0036 \sim 0.0037$ $0.20^{\circ} \sim 0.21^{\circ}$ $0.0036 \sim 0.0075$	
				周波数:100 MHz以上	$0.21^{\circ} \sim 0.43^{\circ}$ $3.2 \times 10^{-4} \sim 0.0037$	
			0.1以上1.0未満	1 GHz未満 周波数:1 GHz以上	$0.19^{\circ} \sim 0.21^{\circ}$ $3.3 \times 10^{-4} \sim 0.0075$	
		散乱パラメータ (反射特性が0のときの 伝送特性)		周波数:100 MHz以上	$0.19^{\circ} \sim 0.43^{\circ}$ $3.2 \times 10^{-5} \sim 3.3 \times 10^{-4}$	
		石心村注)	0.01以上0.1未満	1 GHz未満 周波数:1 GHz以上	$0.18^{\circ} \sim 0.20^{\circ}$ $3.5 \times 10^{-5} \sim 7.5 \times 10^{-4}$	-
				33 GHz以下 周波数:100 MHz以上	$0.20^{\circ} \sim 0.43^{\circ}$ $5.5 \times 10^{-6} \sim 3.5 \times 10^{-5}$	
			0.001以上0.01未満	1 GHz未満 周波数:1 GHz以上	$0.18^{\circ} \sim 0.71^{\circ}$ $1.24 \times 10^{-5} \sim 8.9 \times 10^{-5}$	
				33 GHz以下	$0.20^{\circ} \sim 2.80^{\circ}$	

			校正·測定能力				
種類	校正対象	校正範囲		備考(校正条件等)	拡張不確かさ (<i>k</i> =2)	認定年月日	
			7 mmおよびN型50 Ω		0.024Ω		
			3.5 mm		0.047Ω		
		特性インピーダンス:50 Ω	2.92 mm		0.057Ω		
		ピーダンス 特性インピーダンス:75 Ω 7 mm, N型50 Ω, 3.5 mm,	2.4 mm	導体損失は含まない 1 GHz、導体損失は含まな	0.069Ω		
			1.85 mm		0.089Ω		
高周波インピーダンス			1.0 mm			0.164Ω	2010年3月16日
			N型75 Ω		0.034Ω		
			0°以上120°以下		0.0016°		
	位相	2.92 mm, 2.4 mm, 1.85 mm, 1.0 mmおよびN型75 Ω	120º超え360º以下	V	0.0041°		

			· 公伦力		36/56	
種類	校正対象	校正範囲	備考(校正条件等)	拡張不確かさ (<i>k</i> =2)	認定年月日	
			150 kHz以上、15 MHz未満	3.6 dB		
	パッシブループアンテナ (直径:10 cm)	磁界アンテナ係数:	15 MHz以上、30 MHz未満	3.3 dB		
	(直往:10 cm <i>)</i>	$-10~\mathrm{dB(S/m)}\sim50~\mathrm{dB(S/m)}$	30 MHz	2.7 dB		
			9 kHz以上、150 kHz未満	3.2 dB	1	
	アクティブループアンテナ (直径:60 cm)		150 kHz以上、500 kHz未満	2.2 dB		
アンテナ係数		磁界アンテナ係数: -10 dB(S/m) ~ 70 dB(S/m)	500 kHz以上、15 MHz未満	2.0 dB	0010/50 110 1	
(ループアンテナ)		— 10 db(5/ lil) · • 10 db(5/ lil)	15 MHz以上、30 MHz未満	1.8 dB	2010年3月16日	
			30 MHz	1.6 dB		
			20 Hz以上、30 Hz未満	5.6 dB		
	パッシブループアンテナ	磁界アンテナ係数:	30 Hz以上、60 Hz未満	3.9 dB		
	(直径:133 mm, 巻数:36回)	$-25~\mathrm{dB(S/m)}\sim-40~\mathrm{dB(S/m)}$	60 Hz以上、100 Hz未満	3.8 dB		
			100 Hz以上、200 kHz以下	3.7 dB	7	
	1.0	アンテナ係数: -5 dB(1/m) 以上 40 dB(1/m) 以下	周波数:30 MHz以上1000 MHz以下、 地上 2 m、水平偏波	0.7 dB		
	ダイポールアンテナ	アンテナ係数: 40 dB(1/m) 以上 50 dB(1/m) 以下	周波数:1 GHz以上2 GHz以下、 自由空間 0.4 dB			
アンテナ係数	ログペリオディック アンテナ	アンテナ係数: 10 dB(1/m) 以上 35 dB(1/m) 以下	周波数: 300 MHz以上1000 MHz以下 自由空間	0.5 dB	2012年5月21日	
	バイコニカル	アンテナ係数: 5 dB(1/m) 以上	周波数: 30 MHz, 35 MHz, 40 MHz 自由空間	0.7 dB		
	アンテナ	5 dB(1/m) 以上 25 dB(1/m) 以下	周波数: 45 MHz以上300 MHz以下 自由空間	0.5 dB		

			校正•測定能力			37/56
種類	14-T-1-1-E-	<u> </u>	備考(校正	三条件等)	拡張不確かさ	認定年月日
	校正対象	校正範囲	導波管規格(EIA)	周波数	(k=2)	
				1 GHz		
			WR770	1.05 GHz	0.36 dB	
				1.15 GHz		
				1.15 GHz		
			WR650	1.5 GHz	0.36 dB	
			1.7 GHz			
			1.7 GHz			
			WR430	2.45 GHz	0.25 dB	
				2.6 GHz		
				2.6 GHz		- 2010年3月16日
			WR284	3.27 GHz	0.25 dB	
				3.95 GHz		
			WR187 WR137	3.95 GHz	0.23 dB	
		トーンアンテナ アンテナ利得:14 dBi ~ 25 dBi -		4.9 GHz		
アンテナ利得	煙淮ホーンアンテナ			5.85 GHz		
7 2 7 7 7 1 1 1 1		20 dbi		5.85 GHz	0.24 dB 0.26 dB	
				7 GHz		
				8.2 GHz		
				8.2 GHz		
			WR90	10 GHz		
				12.4 GHz		
				12.4 GHz		
			WR62	15.2 GHz	0.26 dB	
				18 GHz		
				18 GHz		
			WR42	22 GHz	0.36 dB	
				26.5 GHz		
			WR28	26.5 GHz	0.31 dB	_
				33 GHz	0.36 dB	_
				40 GHz	0.41 dB	

			1 1 Dest May 1			30/30 I
種類			校正•測定能力			認定
1里天只	校正対象	校正	範囲	備考	拡張不確かさ(k = 2)	年月日
交直変換	交直変換器	$0.01~{ m V} \sim 1000~{ m V}$	$10~{ m Hz}\sim 1~{ m MHz}$	詳細は別 表Mx5.1	2 μV/V ~ 123 μV/V (相対不確かさ)	2014年
交流電圧	交流電圧計	1 V , 10 V	4 Hz ∼ 100 kHz	詳細は別 表Mx5.2	9 μV/V ~ 142 μV/V (相対不確かさ)	4月25日

別表 MX5.1 交直変換器 単位 μV/V

773X WIXO.1	人但久沃丽	Г									$+\mu \nu \mu \nu \nu$
	10 Hz	40 Hz	50 Hz	100 Hz	200 Hz	1 kHz	10 kHz	20 kHz	50 kHz	100 kHz	500 kHz
	\sim 40 Hz	~ 50 Hz	\sim 100 Hz	\sim 200 Hz	\sim 1 kHz	\sim 10 kHz	\sim 20 kHz	\sim 50 kHz	\sim 100 kHz	\sim 500 kHz	∼ 1 MHz
10 mV	86	86	69	69	66	68	78	78	123	-	-
30 mV	41	41	29	29	26	29	29	29	57	-	-
60 mV	40	40	29	29	25	28	28	28	57	-	-
100 mV	24	24	13	13	10	11	12	12	13	-	-
200 mV	24	24	13	13	10	11	12	12	13	-	-
300 mV	23	23	11	11	7	7	8	8	9	21	36
600 mV	15	15	7	7	4	4	5	5	6	17	32
1 V	10	10	6	6	2	3	4	4	6	14	28
$2 \text{ V} \sim 3 \text{ V}$	8	5	5	5	2	2	2	4	4	9	25
$3 \text{ V} \sim 5 \text{ V}$	11	5	5	5	2	2	2	4	4	9	25
$5 \text{ V} \sim 6 \text{ V}$	7	4	4	4	3	3	3	4	4	10	30
$6 \text{ V} \sim 10 \text{ V}$	30	10	10	10	3	3	3	4	4	10	30
$10~\mathrm{V}\sim12~\mathrm{V}$	6	4	4	4	4	4	4	5	5	11	33
$12 \text{ V} \sim 20 \text{ V}$	27	8	8	8	4	4	4	5	5	11	33
$20 \text{ V} \sim 50 \text{ V}$	17	17	9	5	5	5	6	7	7	-	_
$50 \text{ V} \sim 100 \text{ V}$	26	26	11	7	7	7	7	9	9	-	-
$100~\mathrm{V} \sim 200~\mathrm{V}$	32	32	14	8	8	8	9	12	12	-	-
$200 \text{ V} \sim 400 \text{ V}$	_	-	24	14	14	10	12	16	18	-	-
$400 \text{ V} \sim 700 \text{ V}$	_	-	29	19	19	16	19	29	48	-	_
$700 \text{ V} \sim 1000 \text{ V}$	_	_	29	19	19	16	19	29	_	_	_

別表 Mx5.2 交流電圧計 単位 $\mu V/V$

				50 Hz ∼ 0.4 kHz	0.4 kHz ∼10 kHz				70 kHz ∼ 100 kHz
ı	1 V	142	-	-	-	-	-	-	_
	10 V	104	31	13	9	11	17	21	25

		•	校正•測定	 能力		39/30	
種類	校正対象		校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日	
光度	光度標準電球	10	cd — 3000 cd		0.64 %		
照度	単平面型照度標準電球	1	lx — 3000 lx		0.70 %	2013年4月26日	
全光束	全光束標準電球	5 1	lm — 9000 lm		0.84 %		
				$10^{-5} - 9.0 \times 10^{-3}$) W·m ⁻² ·nm ⁻¹	250 nm ≤ λ ≤ 350 nm	3.8 %	
分光放射照度			$10^{-3} - 4.0 \times 10^{-2}$) W·m ⁻² ·nm ⁻¹	$350~\text{nm} < \lambda \leq 450~\text{nm}$	3.2 %		
	分光放射照度標準電球		$\times 10^{-3} - 0.15$) W·m ⁻² ·nm ⁻¹	$450~\text{nm} < \lambda \leq 600~\text{nm}$	2.8 %		
	刀儿似剂需及惊华电机		$\times 10^{-2} - 0.25$) W·m ⁻² ·nm ⁻¹	$600~\text{nm} < \lambda \leq 830~\text{nm}$	3.0 %	2010年3月16日	
		$(1.5 \times 10^{-2} - 0.25)$ W·m ⁻² ·nm ⁻¹		830 nm $< \lambda \le 2300$ nm	3.4 %		
			$10^{-3} - 5.5 \times 10^{-2}$) W·m ⁻² ·nm ⁻¹	$2300~\text{nm} < \lambda \leq 2500~\text{nm}$	6.0 %		
分布温度	分布温度標準電球	2000 K以上3400 K以下			15 K		
	シリコンフォトダイオード	200 nm以上250 nm未満			(-0.064λ+17.6)% λは波長(単位:nm)		
		250 nr	m以上380 nm未満		1.6 %		
		380 nm以上650 nm未満		紫外·可視·近赤外	(-2.04×10 ⁻³ λ +1.78) % λ は波長(単位:nm)		
分光応答度		650 nm以上930 nm未満			(3.93×10 ⁻⁴ λ +0.195) % λ は波長(単位:nm)		
		930 nm以上1150 nm以下			(1.063×10 ⁻² λ -9.33) % λは波長(単位:nm)		
	広帯域放射検出器	*140 n	m以上160 nm未満	遠紫外	(-0.11 λ +23.3) % λ は波長(単位:nm)	2010年3月16日	
		*160 n	m以上200 nm以下	XE XIV / I	(-0.0225 λ +9.3) % λ は波長(単位:nm)	2010年3月10日	
				$360~\text{nm} \leq \lambda < 440~\text{nm}$	0.46 %		
分光拡散反射率	拡散反射板	可視域	$0.8000 \le R < 1.000$	440 nm ≤ λ < 770 nm	0.30 %		
				770 nm $\leq \lambda \leq 830$ nm	0.42 %		
		+: // k+ 0.0000 / D. / 1.000		830 nm ≤ λ < 900 nm	0.42 %		
		赤外域	$0.8000 \le R \le 1.000$	900 nm ≤ λ < 1200 nm	0.64 %		
				$1200 \text{ nm} \le \lambda \le 1600 \text{ nm}$	0.80 %		

^{*:}認定の一時停止中

検に対象 検に範囲 保育 検察性験が (3-2) 浸定年月日 (1. 公本			40/56
18 dB 27 dB 0.0009 dB 0.0013 dB 0.0021 dB 0.0021 dB 0.0025 dB 0.0025 dB 0.0024 dB 0.0034 dB 0.0034 dB 0.0034 dB 0.0034 dB 0.00034 dB 0.00011 dB 0.00056 dB 0.00011 dB 0.00016 dB 0.00011 dB 0.00024 dB 0	種類	校正対象				認定年月日
27 dB 36 dB 36 dB 45			9 dB		0.0005 dB	
### 15 dB			18 dB		0.0009 dB	
### 15 d B			27 dB		0.0013 dB	
(E/V) 一側、9 dBステップ			36 dB] [0.0018 dB	7
### 150 mm, 1 mW基準			45 dB		0.0021 dB	7
72 dB			54 dB	低パワー側, 9 dBステップ	0.0025 dB	7
81 dB 90 dB 90 dB 0,0045 dB 0,0006 dB 0,0014 dB 0,0001 dB 0,0015 dB 0,0015 dB 0,0015 dB 0,0020 dB 0,0022 dB 0,0022 dB 0,0022 dB 0,0022 dB 0,0023 dB 0,0033 dB 0,0019 dB 0,0023 dB 0,0025 dB 0,0031 dB 0,0031 dB 0,0032 dB 0,0032 dB 0,0032 dB 0,0033 dB 0,003			63 dB] [0.0030 dB	7
第90 dB			72 dB] [0.0034 dB	7
***			81 dB		0.0039 dB	7
***			90 dB	1	0.0045 dB	7
************************************			10 dB		0.0006 dB	
************************************			20 dB	1 [0.0011 dB	1
***			30 dB	1	0.0015 dB	
後がワーメータ			40 dB	1	0.0020 dB	
***			50 dB	i 波長 1550 nm, 1 mW基準, 低パワー側, 10 dBステップ	0.0024 dB	7
光減衰量 光パワーメータ 80 dB 90 dB 0.0038 dB 0.0052 dB 0.0019 dB 0.0021 dB 0.0021 dB 0.0021 dB 0.0023 dB 0.0025 dB 0.0025 dB 0.0025 dB 0.0027 dB 0.0028 dB 0.0028 dB 0.0028 dB 0.0028 dB 0.0028 dB 0.0028 dB 0.0031 dB 0.0025 dB 0.0031 dB 0.0025 dB 0.0031 dB 0.0025 dB 0.0031 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0033 dB 0.0035 dB 0.0038 dB			60 dB		0.0028 dB	7
光減衰量 光パワーメーク			70 dB	1	0.0033 dB	7
光ボワーメータ 3 dB 0.0019 dB 0.0019 dB 0.0019 dB 0.0019 dB 0.0019 dB 0.0019 dB 0.0021 dB 0.0021 dB 0.0021 dB 0.0021 dB 0.0023 dB 0.0023 dB 0.0023 dB 0.0023 dB 0.0027 dB 0.0027 dB 0.0027 dB 0.0023 dB 0.0023 dB 0.0023 dB 0.0031 dB 0.0031 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0033 dB 0.0033 dB 0.0035 dB 0.0035 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0040 dB			80 dB	1	0.0038 dB	
光減衰量 光パワーメータ 6 dB 0.0019 dB 2010年3月16 9 dB 0.0019 dB 0.0021 dB 0.0021 dB 0.0021 dB 0.0023 dB 0.0023 dB 0.0025 dB 0.0025 dB 0.0025 dB 0.0027 dB 0.0028 dB 0.0028 dB 0.0031 dB 0.0031 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0034 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0040 dB </td <td></td> <td></td> <td>90 dB</td> <td>1</td> <td>0.0052 dB</td> <td>7</td>			90 dB	1	0.0052 dB	7
光減衰量 光パワーメータ 9 dB 12 dB 1550 nm, 1 mW基準, 高パワー側 0.0019 dB 0.0021 dB 0.0023 dB 0.0025 dB 0.0025 dB 0.0027 dB 0.0027 dB 0.0028 dB 0.0028 dB 0.0031 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0033 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0036 dB 0.0036 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0040 dB			3 dB		0.0019 dB	
12 dB 12 dB 15 dB 15 dB 18 dB 18 dB 21 dB 21 dB 21 dB 0.0023 dB 0.0025 dB 0.0027 dB 0.0027 dB 0.0028 dB 0.0031 dB 0.0052 dB 0 dB (レンジ不連続) 3 dB 6 dB 7 dB 10 dB	\\\\\\	\(\lambda\) \(\rangle\) \(\ra	6 dB	1	0.0019 dB	2010年3月16日
15 dB 波長 1550 nm, 1 mW基準, 高パワー側	光冽衰重	光ハリーメータ	9 dB	- - - 波長 1550 nm, 1 mW基準,	0.0019 dB	
高パワー側 0.0025 dB 0.0027 dB 0.0027 dB 0.0028 dB 0.0028 dB 0.0031 dB 0.0052 dB 0.0053 d			12 dB		0.0021 dB	
高パワー側 0.0025 dB 0.0027 dB 0.0027 dB 0.0028 dB 0.0028 dB 0.0028 dB 0.0031 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0033 dB 0.0035 dB 0.0035 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0040 dB			15 dB		0.0023 dB	7
24 dB 0.0028 dB 27 dB 0.0031 dB 30 dB 0.0052 dB 0 dB (レンジ不連続) 0.0029 dB 6 dB 0.0032 dB 7 dB 0.0034 dB 10 dB (レンジ不連続を含む) 0.0035 dB 13 dB 0.0038 dB 次ワー側 0.0040 dB			18 dB	高パワー側	0.0025 dB	7
27 dB 30 dB 0 dB (レンジ不連続) 0 dB (レンジ不連続) 3 dB 6 dB 7 dB 10 dB 10 dB (レンジ不連続を含む) 13 dB (0.0031 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0034 dB 0.0034 dB 0.0035 dB			21 dB	1 [0.0027 dB	7
30 dB 0.0052 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0029 dB 0.0032 dB 0.0032 dB 0.0032 dB 0.0034 dB 0.0034 dB 0.0035 dB 0.0035 dB 0.0035 dB 0.0038 dB 0.0038 dB 0.0038 dB 0.0040 dB 0.0040 dB			24 dB] [0.0028 dB	7
0 dB (レンジ不連続) 0.0029 dB 3 dB 0.0029 dB 6 dB 0.0032 dB 7 dB 0.0034 dB 10 dB 0.0035 dB 10 dB (レンジ不連続を含む) 0.0038 dB 13 dB 波長 1465 nm, 1 mW基準, 高パワー側 0.0040 dB			27 dB	1 [0.0031 dB	7
3 dB 6 dB 7 dB 10 dB 10 dB (レンジ不連続を含む) 13 dB 2 (30 dB	1 [0.0052 dB	7
6 dB 0.0032 dB 7 dB 0.0034 dB 10 dB 0.0035 dB 10 dB (レンジ不連続を含む) 0.0038 dB 13 dB 波長 1465 nm, 1 mW基準, 高パワー側 0.0040 dB			0 dB (レンジ不連続)		0.0029 dB	7
7 dB 0.0034 dB 10 dB 0.0035 dB 10 dB (レンジ不連続を含む) 0.0038 dB 13 dB 波長 1465 nm, 1 mW基準, 高パワー側 0.0040 dB			3 dB	1	0.0029 dB	7
10 dB 10 dB (レンジ不連続を含む) 13 dB			6 dB	1	0.0032 dB	7
10 dB (レンジ不連続を含む) 波長 1465 nm, 1 mW基準, 高パワー側 0.0038 dB 0.0040 dB 0.0040 dB			7 dB	1	0.0034 dB	1
13 dB 波長 1465 nm, 1 mW基準, 高パワー側 0.0040 dB			10 dB	1	0.0035 dB	7
- 15 db - 高パワー側 - 0.0040 db			10 dB (レンジ不連続を含む)	1 [0.0038 dB	
			13 dB		0.0040 dB	
16 dB 0.0042 dB			16 dB	同ハソ一側	0.0042 dB	
17 dB 0.0043 dB			17 dB	1	0.0043 dB	7
20 dB 0.0044 dB			20 dB	1		
20 dB (レンジ不連続を含む) 0.0046 dB			20 dB (レンジ不連続を含む)	1		
23 dB 0.0048 dB				1		1
24 dB 0.0050 dB			24 dB	1		7

	校正・測定能力					
種類	校正対象		校正範囲	備考	拡張不確かさ (k=2)	— 認定年月日
			9 dB		0.0011 dB	
			18 dB		0.0020 dB	
			27 dB		0.0028 dB	-
			36 dB		0.0037 dB	
			45 dB	波長 1310 nm, 1 mW基準,	0.0046 dB	
			54 dB	低パワー側, 9 dBステップ	0.0055 dB	
			63 dB		0.0064 dB	
			72 dB		0.0074 dB	
			81 dB		0.0087 dB	
光減衰量	光パワーメータ		90 dB		0.0102 dB	
		10 dB 20 dB			0.0011 dB	
					0.0021 dB	
			30 dB		0.0030 dB	
			40 dB	が E 1910 1 10 世 海	0.0040 dB	
			50 dB	波長 1310 nm, 1 mW基準, 低パワー側, 10 dBステップ	0.0053 dB	
			60 dB	[2] [M, 10 GE, 17 7 7	0.0062 dB	
			70 dB		0.0072 dB	
		80 dB 90 dB			0.0082 dB	
					0.0099 dB	
			50 μW~100 μW		0.48 %	
W 7. 3. 9-1		050	100 μW~500 μW	マルチモードファイバ	0.34 %	
		852 nm	500 μW~1 mW	GI 50/125	0.30 %	2010年3月16日
	\[\(\lambda_{\color}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1 mW		0.21 %	
光ファイバパワー	光パワーメータ		50 μW~100 μW		0.37 %	
		1310 nm	100 μW~500 μW		0.31 %	
		/1550 nm	500 μW~1 mW	シングルモードファイバ	0.26 %	
			1 mW		0.23 %	
			10 mW		0.13 %	
		波長 488 nm 515 nm	10 mW超 200 mW以下		0.17 %	
			200 mW超 1 W以下		0.70 %	
		波長 ザパワーメータ 404 nm 633 nm	50 μW以上 100 μW未満		0.22 %	1
レーザパワー	レーザパワーメータ		100 μW以上 1 mW未満	受光径 直径5 mm以上	0.17 %	
			1 mW以上 10 mW以下		0.13 %	
		波長	50 μW以上 100 μW未満	_	0.22 %	
		1550 nm	100 μW以上 1 mW未満	-	0.17 %	
			1 mW)# ₩ 1 00	0.13 %	_
高出力レーザーパワー	レーザパワーメータ	لِ W ل	以上10 W以下	波長 1.06 μm	1.1 %	_
レーザパワー		波長 266 nm	10 mW 以上100 mW以下	波長 10.6 μm	1.3 %	
	レーザパワーメータ	波長 355 nm, 10 mW 以上 532 nm, 1 W以下 1064 nm		平均パワー	1.5 %	2013年4日26日
		波長 266 nm	1 mJ 以上 10 mJ以下			2013年4月26日
レーザエネルギー	エネルギーメータ、ジュールメータ	ネルギーメータ、油馬		単一パルス	1.5 %	

人工事本	(者の認定の区分:温度・湿度	校正・測定	 能力		42/
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
	温度定点装置 (水の三重点セル)	水の三重点 (0.01 ℃)		0.10 mK 0.16 mK	
	温度定点装置 (水銀定点装置)	水銀の三重点 (−38.8344 °C)		0.7 mK	
	温度定点装置 (ガリウム点装置)	ガリウムの融点 (29.7646 ℃)		0.18 mK 0.45 mK	
	温度定点装置 (インジウム点装置)	インジウムの凝固点 (156.5985 ℃)		0.40 mK 1.8 mK	
	温度定点装置 (スズ点装置)	スズの凝固点 (231.928 ℃)		0.5 mK 1.2 mK	
	温度定点装置 (亜鉛点装置)	亜鉛の凝固点 (419.527 ℃)		0.7 mK 1.8 mK	
		−38.8344 °C		0.8 mK	
	白金抵抗温度計	29.7646 ℃		0.20 mK 0.6 mK	
		156.5985 ℃		0.40 mK 1.8 mK	2011年11月25
		231.928 ℃		0.6 mK 1.8 mK	
		419.527 ℃		0.7 mK 2.0 mK	
	H 32.154/ Ulmi/X H 1	660.323 ℃		1.8 mK 3.5 mK	
		961.78 °C	-	7 mK	
温度	-	0.01 °C∼156.5985 °C		1.8 mK	
		0.01 °C∼231.928 °C		2.3 mK	
		0.01 °C∼419.527 °C	7	2.0 mK	
		0.01 °C∼660.323 °C	7	3.5 mK	
		0.01 ℃~961.78 ℃		7 mK	
	標準抵抗器を伴う 白金抵抗温度計	0.01 ℃		0.30 mK	
	ロングステム型白金抵抗温度計	83.8058 K		1.5 mK	
		302.9166 K		0.44 mK	
		273.16 K		0.36 mK	
		234.3156 K		0.50 mK	
		83.8058 K		0.28 mK	2010年3月16
	カプセル型白金抵抗温度計	54.3584 K		0.24 mK	2010 07,110
		24.5561 K		0.36 mK	
		*20.3 K	20.2 Kと20.4 Kの間の1点	1.0 mK	
	-	*17 K	16.9 Kと17.1 Kの間の1点	1.0 mK	
		13.8033 K		0.32 mK	
		419.527 °C	_	0.09 ℃	
		660.323 ℃	_	0.07 °C	
	电	961.78 °C	_	0.08 ℃	0011 771 773
	貴金属熱電対	1084.62 ℃	-	0.09 °C	2011年11月25
		1324.0 ℃ 1553.5 ℃	-	0.53 ℃ 0.6 ℃	_
		0 °C~1100 °C			-
				0.12 ℃	

		校正•測定能力			43/30
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
		-30 ℃以上-20 ℃未満		0.15 K	
	低温域比較黒体炉	-20 ℃以上-10 ℃未満		0.09 K	
		-10 ℃以上0 ℃未満		0.06 K	
		0 ℃以上10 ℃未満		0.05 K	
		10 ℃以上20 ℃未満		0.02 K	
		20 ℃以上30 ℃未満		0.02 K	_
		30 ℃以上40 ℃未満 40 ℃以上50 ℃未満		0.02 K 0.02 K	
	常温域比較黒体炉	50 ℃以上60 ℃未満		0.02 K	
		60 ℃以上70 ℃未満		0.03 K	
		70 ℃以上80 ℃未満		0.03 K	
		80 ℃以上90 ℃未満		0.04 K	
		90 ℃以上100 ℃以下		0.05 K	
		100 ℃超110 ℃未満		0.05 K	
		110 ℃以上120 ℃未満		0.05 K	
	中温域比較黒体炉	120 ℃以上130 ℃未満		0.05 K	
		130 ℃以上140 ℃未満 140 ℃以上150 ℃未満		0.06 K	_
		150 ℃以上160 ℃以下		0.06 K 0.06 K	
	体温域比較黒体炉	35 ℃以上42 ℃以下		0.06 K	
	定点黒体 (銅 Cu)	1084.62 ℃		0.10 K	
	定点黒体 (銀 Ag)	961.78 ℃		0.10 K	
		660.323 ℃		0.10 K	
		419.527 °C		0.10 K	
	定点黒体 (スズ Sn)	231.928 ℃		0.12 K	
	定点黒体 (インジウムIn)	156.5985 ℃		0.12 K	
温度	定点黒体セル (炭化タングステンー炭素包晶点)	2748 °C		2.2 K	2013年4月26日
	定点黒体セル (レニウムーカーボン共晶点)	2474 ℃		1.7 K	
	定点黒体セル (白金ーカーボン共晶点)	1738 ℃		0.82 K	
	定点黒体セル (パラジウムーカーボン共晶点)	1492 ℃		0.63 K	
	定点黒体セル (コバルトーカーボン共晶点)	1324 ℃		0.51 K	
	定点黒体セル (鉄ーカーボン共晶点)	1153 ℃		0.42 K	
	定点黒体セル (銅点)	1084.62 ℃		0.32 K	
		960 ℃		0.23 K	
		1000 ℃		0.25 K	
		1085 °C	_	0.28 K	_
		1100 °C	_	0.28 K	_
		1200 ℃ 1300 ℃	_	0.33 K 0.39 K	-
		1300 C 1400 °C	-	0.39 K 0.45 K	-
		1500 °C		0.43 K 0.52 K	-
		1600 °C		0.60 K	
	W & W & Do	1700 ℃		0.69 K	
	単色放射温度計 (0.65 mm)	1800 ℃		0.78 K	
		1900 ℃	_	0.88 K	_
		2000 ℃		1.0 K	
		2100 °C	_	1.1 K	_
		2200 ℃ 2300 ℃	-	1.2 K 1.4 K	-
		2400 °C		1.5 K	-
		2500 °C	-	1.6 K	
		2600 ℃		1.8 K	
		2700 ℃		1.9 K	
		2800 ℃		2.1 K	

		校正•測定能	 カ		44/56
種類	校正対象	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
		400 ℃		0.17 K	
		420 ℃		0.15 K	
		600 ℃		0.17 K	
		660 °C		0.19 K	_
		800 °C		0.24 K	_
		960 ℃ 1000 ℃		0.30 K 0.32 K	_
		1085 °C		0.32 K	
	単色放射温度計	1100°C		0.34 K	\dashv
	$(0.9 \ \mu \text{m})$	1200 ℃		0.45 K	\dashv
		1300 ℃		0.57 K	
		1400 ℃		0.70 K	
		1500 ℃		0.86 K	
		1600 ℃		1.0 K	
		1700 ℃		1.2 K	
		1800 ℃		1.5 K	_
		1900 °C		1.7 K	_
		2000 °C		1.9 K	_
	-	160 ℃ 200 ℃		0.10 K 0.08 K	\dashv
		230 °C		0.08 K	-
		250 °C		0.08 K	
		300 ℃		0.08 K	
		350 ℃		0.09 K	
		400 °C		0.10 K	
		420 ℃		0.14 K	
		450 ℃		0.11 K	
温度	単色放射温度計	500 ℃		0.12 K	2013年4月26日
	(1.6 µm、定点補間方	550 ℃		0.12 K	_
	式)	600 ℃ 650 ℃		0.12 K	_
		660 °C		0.12 K 0.15 K	\dashv
				0.13 K	\dashv
	-	750 ℃		0.12 K	
		800 °C		0.13 K	
		850 °C		0.15 K	
		900 ℃		0.17 K	
		950 ℃		0.20 K	
		960 ℃		0.21 K	_
	-	160 ℃以上200 ℃未満		0.21 K	_
		200 ℃以上250 ℃未満 250 ℃以上300 ℃未満		0.22 K	_
		300 ℃以上350 ℃未満		0.19 K 0.19 K	_
		350 ℃以上400 ℃未満		0.19 K	\dashv
		400 ℃以上450 ℃未満		0.20 K	
		450 ℃以上500 ℃未満		0.27 K	
	単色放射温度計	500 ℃以上550 ℃未満		0.27 K	
	単色放射 値度 計	550 ℃以上600 ℃未満		0.28 K	
	(2.0 pm, 2070 [A])	600 ℃以上650 ℃未満		0.29 K	_
		650 ℃以上700 ℃未満		0.30 K	_
		700 ℃以上750 ℃未満		0.31 K	\dashv
	-	750 ℃以上800 ℃未満		0.32 K	\dashv
	}	800 ℃以上850 ℃未満850 ℃以上900 ℃未満		0.34 K 0.37 K	\dashv
	-	900 ℃以上950 ℃未満		0.37 K	\dashv
		950 ℃以上960 ℃以下		0.40 K	\dashv
	1	200 ON T300 ON I		V.11 IV	

	I	Libert Miller Ale	<u></u>		45/56
7千 火工		校正・測定能	カ 		初点欠日日
種類	校正対象	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
		-30 ℃以上-20 ℃未満		0.13 K	
		-20 ℃以上-10 ℃未満		0.10 K	
		-10 ℃以上0 ℃未満		0.08 K	1
		0 ℃以上10 ℃未満		0.07 K	
		10 ℃以上20 ℃未満		0.05 K	
		20 ℃以上30 ℃未満		0.05 K	
		30 ℃以上40 ℃未満		0.05 K	
		40 ℃以上50 ℃未満		0.05 K	-
)	赤外放射温度計	50 ℃以上60 ℃未満		0.05 K	
温度		60 ℃以上70 ℃未満		0.06 K	2013年4月26日
		70 ℃以上80 ℃未満 80 ℃以上90 ℃未満		0.07 K 0.07 K	-
		90 ℃以上100 ℃以下		0.07 K	-
		100 ℃超110 ℃未満		0.09 K 0.10 K	_
		110 ℃以上120 ℃未満		0.10 K	-
		120 ℃以上130 ℃未満		0.12 K	1
		130 ℃以上140 ℃未満		0.12 K	-
		140 ℃以上150 ℃未満		0.13 K	1
		150 ℃以上160 ℃以下		0.15 K	-
		-70 °C ~ -60 °C		0.5 ℃	
		-60 °C ∼ -50 °C		0.2 ℃	-
		-50 °C∼-10 °C	_	0.08 °C	-
		-10 °C ~0 °C		0.09 °C	-
	1. ml	0 °C ~ 10 °C		0.04 °C	1
	露点計	$10 ^{\circ}\text{C} \sim 15 ^{\circ}\text{C}$		0.03 °C	-
		$15 ^{\circ} \text{C} \sim 45 ^{\circ} \text{C}$		0.04 °C	-
		$45 ^{\circ}\text{C} \sim 75 ^{\circ}\text{C}$		0.05 °C	-
		75 °C ~ 90 °C		0.05 °C	-
湿度		90 °C ~ 95 °C		0.07 °C	2013年8月8日
				0.076	-
		12 nmol/mol \sim 19 nmol/mol		(相対不確かさ)	
	物質量分率表示が可能な 微量水分計	19 nmol/mol \sim 49 nmol/mol		0.053 (相対不確かさ)	
		49 nmol/mol \sim 90 nmol/mol		0.034 (相対不確かさ)	
		90 nmol/mol \sim 500 nmol/mol		0.013 (相対不確かさ)	
		$500 \; \mathrm{nmol/mol} \sim 1400 \; \mathrm{nmol/mol}$	_	0.0088	-
		300 milor/ mor - 1400 milor/ mor		(相対不確かさ)	
				3.2 % (温度範囲:297 K ~440 K)	
			松工油库效用	3.1 %	
熱拡散率	 高密度等方性黒鉛試験片	$1 \times 10^{-6} \text{m}^2 \text{s}^{-1} \sim$	校正温度範囲: 297 K 以上	(温度範囲:440 K~1400 K)	
711111111111111111111111111111111111111	NEW 173 EMPER 1807	$5 \times 10^{-4} \text{m}^2 \text{s}^{-1}$	1500 K 以下	3.4 %	
				(温度範囲:1400 K~1500 K)	
				(温度依存性の	
				感度係数分を含む)	
			50 K 以上	$0.0020~\mathrm{JK^{-1}g^{-1}}$	-
	□ / ★ + + + 北 l		75 K 未満	0.0020 JN g	2013年4月26日
	固体材料 (断熱法)		75 K 以上 140 K 未満	$0.0040~\mathrm{JK}^{-1}\mathrm{g}^{-1}$	
比熱容量			140 K 以上 350 K 以下	$0.0060~\mathrm{JK}^{-1}\mathrm{g}^{-1}$	
比熱容量 _	固体材料 (示差走査熱量法)		校正温度範囲: 300 K 以上 900 K 以下 形状: φ5.0 mm~ φ5.5 mm、 厚さ0.9 mm~ 1.0 mmの円板	0.016 JK ⁻¹ g ⁻¹ ~0.023 JK ⁻¹ g ⁻¹ (校正温度範囲に対して、上記数値間で 直線的に増加)	

				校正・測定能力			46/56
種類	校正対象		線源	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
				$2.80 \times 10^{-5} \text{ Gy} \sim 1.19 \times 10^{+1} \text{ Gy}$		0.54 %	
			Cs−137γ線	$3.79 \times 10^{-7} \text{ Gy} \sim 2.80 \times 10^{-5} \text{ Gy}$		1.5 %	
			CS-137 7 形	$2.26 \times 10^{-8} \text{ Gy} \sim 3.79 \times 10^{-7} \text{ Gy}$		2.0 %	
				$2.81 \times 10^{-9} \text{ Gy} \sim 2.26 \times 10^{-8} \text{ Gy}$		2.4 %	
	y 線空気カーマ	γ 線測定器		$2.38 \times 10^{+2} \text{ Gy} \sim 2.68 \times 10^{+3} \text{ Gy}$		0.88 %	
	7	γ線検出素子		$3.88 \times 10^{-4} \text{ Gy} \sim 2.38 \times 10^{+2} \text{ Gy}$		0.72 %	
			$Co-60 \gamma$ 線	$9.48 \times 10^{-7} \text{ Gy} \sim 3.88 \times 10^{-4} \text{ Gy}$		0.80 %	
				$2.81 \times 10^{-7} \text{ Gy} \sim 9.48 \times 10^{-7} \text{ Gy}$		1.1 %	
					1.2 %		
放射線				$9.66 \times 10^{-9} \text{ Gy} \sim 5.41 \times 10^{-8} \text{ Gy}$		1.6 %	2014年4月25日
刀又为了 的 K				$2.80 \times 10^{-6} \text{ Gy/s} \sim 6.63 \times 10^{-4} \text{ Gy/s}$	0.54 % 1.5 % 2.0 %	2014年4月25日	
			Cs−137γ線	$3.79 \times 10^{-8} \text{ Gy/s} \sim 2.80 \times 10^{-6} \text{ Gy/s}$			
			CS-137 Y MK	$2.26 \times 10^{-9} \text{ Gy/s} \sim 3.79 \times 10^{-8} \text{ Gy/s}$		2.0 %	1
				$2.81 \times 10^{-10} \text{ Gy/s} \sim 2.26 \times 10^{-9} \text{ Gy/s}$		2.4 %	
	γ 線空気カーマ率	γ 線測定器		$1.32 \times 10^{-2} \text{ Gy/s} \sim 1.49 \times 10^{-1} \text{ Gy/s}$		0.88 %	
	γ 脉至メルーマ卒	γ 脉侧化品		$3.88 \times 10^{-5} \text{ Gy/s} \sim 1.32 \times 10^{-2} \text{ Gy/s}$		0.72 %	
			Co-60γ線	$9.48 \times 10^{-8} \text{ Gy/s} \sim 3.88 \times 10^{-5} \text{ Gy/s}$		0.80 %	
			CO=OU 7 形R	$5.41 \times 10^{-8} \text{ Gy/s} \sim 9.48 \times 10^{-8} \text{ Gy/s}$		1.1 %	
				$5.35 \times 10^{-9} \text{ Gy/s} \sim 5.41 \times 10^{-8} \text{ Gy/s}$		1.2 %	
				$9.66 \times 10^{-10} \text{ Gy/s} \sim 5.35 \times 10^{-9} \text{ Gy/s}$		1.6 %	

				校正•測定能力		_	41/30
種類	校正文	才象	線源	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
				$8.23 \times 10^{-7} \text{ C/kg} \sim 3.50 \times 10^{-1} \text{ C/kg}$		0.54 %	
			Cs-137γ線	$1.11 \times 10^{-8} \text{ C/kg} \sim 8.23 \times 10^{-7} \text{ C/kg}$		1.5 %	
			CS 137 y Agr	$6.64 \times 10^{-10} \text{ C/kg} \sim 1.11 \times 10^{-8} \text{ C/kg}$		2.0 %	
				$8.26 \times 10^{-11} \text{ C/kg} \sim 6.64 \times 10^{-10} \text{ C/kg}$		2.4 %	
	γ 線照射線量	γ 線測定器		$6.99 \times 10^{0} \text{ C/kg} \sim 7.87 \times 10^{+1} \text{ C/kg}$		0.88 %	
	/ 小水流沟1小水里	γ線検出素子		$1.14 \times 10^{-5} \text{ C/kg} \sim 6.99 \times 10^{0} \text{ C/kg}$		0.72 %	
			Co-60γ線	$2.78 \times 10^{-8} \text{ C/kg} \sim 1.14 \times 10^{-5} \text{ C/kg}$		0.80 %	
			C0-00 y 115k	$1.59 \times 10^{-8} \text{ C/kg} \sim 2.78 \times 10^{-8} \text{ C/kg}$		1.1 %	
				$1.57 \times 10^{-9} \text{ C/kg} \sim 1.59 \times 10^{-8} \text{ C/kg}$		1.2 %	
放射線				$2.84 \times 10^{-10} \text{ C/kg} \sim 1.57 \times 10^{-9} \text{ C/kg}$		1.6 %	2014年4月25日
// // // // // // // // // // // // //				$8.23 \times 10^{-8} (\text{C/kg})/\text{s} \sim 1.94 \times 10^{-5} (\text{C/kg})/\text{s}$		0.54 %	
			Cs-137γ線	$1.11 \times 10^{-9} (\text{C/kg})/\text{s} \sim 8.23 \times 10^{-8} (\text{C/kg})/\text{s}$	 	1.5 %	
				$6.64 \times 10^{-11} (\text{C/kg})/\text{s} \sim 1.11 \times 10^{-9} (\text{C/kg})/\text{s}$			
				$8.26 \times 10^{-12} \text{ (C/kg)/s} \sim 6.64 \times 10^{-11} \text{ (C/kg)/s}$		2.4 %	
	γ線照射線量率	γ線測定器		$3.87 \times 10^{-4} (\text{C/kg})/\text{s} \sim 4.37 \times 10^{-3} (\text{C/kg})/\text{s}$		0.88 %	
	/ 冰水水水水水	<i>,</i>		$1.14 \times 10^{-6} (\text{C/kg})/\text{s} \sim 3.87 \times 10^{-4} (\text{C/kg})/\text{s}$		0.72 %	
			Co-60 ** 約	$2.78 \times 10^{-9} (\text{C/kg})/\text{s} \sim 1.14 \times 10^{-6} (\text{C/kg})/\text{s}$		0.80 %	
			Co-60γ線	$1.59 \times 10^{-9} (\text{C/kg})/\text{s} \sim 2.78 \times 10^{-9} (\text{C/kg})/\text{s}$		1.1 %	
				$1.57 \times 10^{-10} (\text{C/kg})/\text{s} \sim 1.59 \times 10^{-9} (\text{C/kg})/\text{s}$		1.2 %	
				$2.84 \times 10^{-11} (C/kg)/s \sim 1.57 \times 10^{-10} (C/kg)/s$		1.6 %	

				校正•測定能力			40/00
種類	校正対象		線源	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
	γ 線線量当量	線量当量測定器	Cs-137γ線	$8 \times 10^{-9} \text{ Sv} \sim 2 \times 10^{1} \text{ Sv}$		3 %	
放射線			Co-60γ線	$1\times10^{-8}~Sv\sim4\times10^{3}~Sv$		3 %	2014年
<i>万</i> 又分1 76水	γ 線線量当量率	線量当量率測定器	Cs−137γ線	$8 \times 10^{-10} \text{ Sv/s} \sim 8 \times 10^{-4} \text{ Sv/s}$		3 %	4月25日
			Co-60γ線	$1 \times 10^{-9} \text{ Sv/s} \sim 2 \times 10^{-1} \text{ Sv/s}$		3 %	

				校正•測定能	力		1	49/56
種類	校正	対象	着	泉質	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
					$9.0 \times 10^{-8} \text{ Gy} \sim 7.0 \times 10^{-7} \text{ Gy}$		1.5 %	
			中硬X線	QI (0.4~0.9) BIPM IS04037-1 Narrow spectrum IS04037-1	$7.0 \times 10^{-7} \text{ Gy} \sim 4.0 \times 10^{-5} \text{ Gy}$		1.4 %	
			(30 kV∼300 kV)	Low kerma rate IS04037-1 High kerma rate IS04037-1 Wide spectrum	$4.0 \times 10^{-5} \text{ Gy} \sim 9.0 \times 10^{-5} \text{ Gy}$		1.3 %	
				·	$9.0 \times 10^{-5} \text{ Gy} \sim 3.6 \times 10^{+1} \text{ Gy}$		1.2 %	
	X線空気カーマ	X線測定器 X線検出素子		/	$2.5 \times 10^{-5} \text{ Gy} \sim 5.0 \times 10^{-5} \text{ Gy}$		1.2 %	
			軟X線	QI (0.4~0.8) BIPM	$5.0 \times 10^{-5} \text{ Gy} \sim 1.0 \times 10^{-4} \text{ Gy}$		1.0 %	
			(10 kV∼50 kV)	IS04037-1 Narrow spectrum	$1.0 \times 10^{-4} \mathrm{Gy} \sim 4.0 \times 10^{-4} \mathrm{Gy}$	1)	0.9 %	
				rvarrow spectrum	$4.0 \times 10^{-4} \text{ Gy} \sim 1.8 \times 10^{+2} \text{ Gy}$		0.8 %	
			マンモグラフィX線 (10 kV〜50 kV)	Mo/0.030mmMo Mo/0.032mmMo Mo/0.025mmRh Rh/0.025mmRh W/0.05mmRh	$5.0 \times 10^{-5} \text{ Gy} \sim 1.0 \times 10^{-4} \text{ Gy}$		1.0 %	
					$1.0 \times 10^{-4} \mathrm{Gy} \sim 4.0 \times 10^{-4} \mathrm{Gy}$		0.9 %	
放射線				W/0.5mmAl W/0.7mmAl	$4.0 \times 10^{-4} \text{ Gy} \sim 1.0 \times 10^{+2} \text{ Gy}$		0.8 %	2014年4月25日
			中硬X線 (30 kV~300 kV)	QI (0.4~0.9) BIPM IS04037-1 Narrow spectrum IS04037-1 Low kerma rate IS04037-1 High kerma rate	$9.0 \times 10^{-9} \text{ Gy/s} \sim$ $7.0 \times 10^{-8} \text{ Gy/s}$		1.5 %	
					$7.0 \times 10^{-8} \text{ Gy/s} \sim$ $4.0 \times 10^{-6} \text{ Gy/s}$		1.4 %	
					$4.0 \times 10^{-6} \text{ Gy/s} \sim$ $9.0 \times 10^{-6} \text{ Gy/s}$		1.3 %	
				IS04037-1 Wide spectrum	$9.0 \times 10^{-6} \text{ Gy/s} \sim$ $2.0 \times 10^{-3} \text{ Gy/s}$		1.2 %	
	X線空気カーマ率	X線測定器		QI	$2.5 \times 10^{-6} \text{ Gy/s} \sim 5.0 \times 10^{-6} \text{ Gy/s}$		1.2 %	
			軟X線	(0.4∼0.8) BIPM	$5.0 \times 10^{-6} \text{ Gy/s} \sim$ $1.0 \times 10^{-5} \text{ Gy/s}$		1.0 %	
			(10 kV∼50 kV)	IS04037- 1	$1.0 \times 10^{-5} \text{Gy/s} \sim$ $4.0 \times 10^{-5} \text{Gy/s}$		0.9 %	
				Narrow spectrum	$4.0 \times 10^{-5} \text{ Gy/s} \sim 1.0 \times 10^{-2} \text{ Gy/s}$		0.8 %	
				Mo/0.030mmMo Mo/0.032mmMo	$5.0 \times 10^{-6} \text{ Gy/s} \sim 1.0 \times 10^{-5} \text{ Gy/s}$		1.0 %	
			マンモグラフィX線 (10 kV〜50 kV)	Mo/0.025mmRh Rh/0.025mmRh W/0.05mmRh W/0.05mmAg	$1.0 \times 10^{-5} \mathrm{Gy/s} \sim 4.0 \times 10^{-5} \mathrm{Gy/s}$	2)	0.9 %	
				W/0.5mmAl W/0.7mmAl	$4.0 \times 10^{-5} \text{ Gy/s} \sim$ $5.0 \times 10^{-3} \text{ Gy/s}$		0.8 %	

¹⁾ ただし、Rh管球の範囲は $3.0\times10^{-4}~{\rm Gy}\sim6.0\times10^{+1}~{\rm Gy}$ 、W管球の範囲は $5.0\times10^{-4}~{\rm Gy}\sim1.0\times10^{+2}~{\rm Gy}$ 2) ただし、Rh管球の範囲は $3.0\times10^{-5}~{\rm Gy/s}\sim3.0\times10^{-3}~{\rm Gy/s}$ 、W管球の範囲は $5.0\times10^{-5}~{\rm Gy/s}\sim5.0\times10^{-3}~{\rm Gy/s}$

			T	校正•測定能力	7			30/30
種類	校正文	対象		線質	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
				QI	$2.6 \times 10^{-9} \text{ C/kg} \sim$ $2.0 \times 10^{-8} \text{ C/kg}$		1.5 %	
			中硬X線	(0.4~0.9) BIPM IS04037-1 Narrow spectrum IS04037-1	$2.0 \times 10^{-8} \text{ C/kg} \sim 1.2 \times 10^{-6} \text{ C/kg}$		1.4 %	
			(30 kV∼300 kV)	Low kerma rate IS04037-1 High kerma rate IS04037-1 Wide spectrum	$1.2 \times 10^{-6} \text{ C/kg} \sim$ $2.6 \times 10^{-6} \text{ C/kg}$		1.3 %	
		X線測定器		wide spectium	$2.6 \times 10^{-6} \text{ C/kg} \sim 1.1 \times 10^{+0} \text{ C/kg}$		1.2 %	
	X線照射線量	X線検出素子		QI	$7.4 \times 10^{-7} \text{ C/kg} \sim 1.5 \times 10^{-6} \text{ C/kg}$		1.2 %	
			軟X線	$(0.4 \sim 0.8)$ BIPM	$1.5 \times 10^{-6} \text{ C/kg} \sim$ $2.9 \times 10^{-6} \text{ C/kg}$		1.0 %	
			(10 kV∼50 kV)	IS04037-1	$2.9 \times 10^{-6} \mathrm{C/kg} \sim 1.2 \times 10^{-5} \mathrm{C/kg}$		0.9 %	
				Narrow spectrum	$1.2 \times 10^{-5} \text{ C/kg} \sim 5.2 \times 10^{+0} \text{ C/kg}$		0.8 %	
			マンモグラフィX 線 (10 kV~50 kV)	Mo/0.030mmMo Mo/0.032mmMo Mo/0.025mmRh Rh/0.025mmRh W/0.05mmRh W/0.05mmAg	$1.5 \times 10^{-6} \text{ C/kg} \sim$ $2.9 \times 10^{-6} \text{ C/kg}$		1.0 %	
					$2.9 \times 10^{-6} \text{C/kg} \sim 1.2 \times 10^{-5} \text{C/kg}$	1)	0.9 %	
放射線				W/0.5mmAl W/0.7mmAl	$1.2 \times 10^{-5} \text{ C/kg} \sim 3.0 \times 10^{+0} \text{ C/kg}$		0.8 %	2014年4月25日
//X/31/MK			中硬X線 (30 kV~300 kV)	QI (0.4~0.9) BIPM IS04037-1 Narrow spectrum IS04037-1 Low kerma rate IS04037-1 High kerma rate IS04037-1	$2.6 \times 10^{-10} (\text{C/kg})/\text{s} \sim 2.0 \times 10^{-9} (\text{C/kg})/\text{s}$		1.5 %	
					$2.0 \times 10^{-9} \text{ (C/kg)/s} \sim 1.2 \times 10^{-7} \text{ (C/kg)/s}$		1.4 %	
					$1.2 \times 10^{-7} \text{ (C/kg)/s} \sim$ $2.6 \times 10^{-7} \text{ (C/kg)/s}$		1.3 %	
				Wide spectrum	$2.6 \times 10^{-7} \text{ (C/kg)/s} \sim$ $5.9 \times 10^{-5} \text{ (C/kg)/s}$		1.2 %	
	X線照射線量率	X線測定器		QI	7.4×10 ⁻⁸ (C/kg)/s \sim 1.5×10 ⁻⁷ (C/kg)/s		1.2 %	
			軟X線	$(0.4 \sim 0.8)$ BIPM	$1.5 \times 10^{-7} \text{ (C/kg)/s} \sim$ $2.9 \times 10^{-7} \text{ (C/kg)/s}$		1.0 %	
			(10 kV~50 kV)	IS04037-1	$2.9 \times 10^{-7} \text{ (C/kg)/s} \sim 1.2 \times 10^{-6} \text{ (C/kg)/s}$		0.9 %	
				Narrow spectrum	$1.2 \times 10^{-6} \text{ (C/kg)/s} \sim$ $2.9 \times 10^{-4} \text{ (C/kg)/s}$		0.8 %	
				Mo/0.030mmMo Mo/0.032mmMo Mo/0.025mmRh	$1.5 \times 10^{-7} \text{ (C/kg)/s} \sim$ $2.9 \times 10^{-7} \text{ (C/kg)/s}$		1.0 %	-
			マンモグラフィX 線 (10 kV~50 kV)	Mo/0.025mmRh Rh/0.025mmRh W/0.05mmRh W/0.05mmAg	$2.9 \times 10^{-7} \text{ (C/kg)/s} \sim 1.2 \times 10^{-6} \text{ (C/kg)/s}$	2)	0.9 %	
				W/0.5mmAl W/0.7mmAl	$1.2 \times 10^{-6} \text{ (C/kg)/s} \sim 1.5 \times 10^{-4} \text{ (C/kg)/s}$		0.8 %	

¹⁾ ただし、Rh管球の範囲は 9.0×10^{-6} C/kg $\sim 1.8\times10^{0}$ C/kg、W管球の範囲は 1.5×10^{-5} C/kg $\sim 3.0\times10^{0}$ C/kg 2) ただし、Rh管球の範囲は 9.0×10^{-7} (C/kg)/s $\sim 9.0\times10^{-5}$ (C/kg)/s、W管球の範囲は 1.5×10^{-6} (C/kg)/s $\sim 1.5\times10^{-4}$ (C/kg)/s

			校正•測定能力				51/56	
種類	校正対象		線質	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日	
	水吸収線量率	水吸収線量率測定器	Co−60γ線	$1.2 \times 10^{-2} \text{ Gy} \cdot \text{s}^{-1}$	1)	0.8 %		
放射線	水吸収線量	水吸収線量測定器 水吸収線量測定素子	Co−60γ線	$0.1~{ m Gy} \sim 220~{ m Gy}$	1)	0.8 %	2014年 4月25日	
	水吸収線量	水吸収線量測定器 水吸収線量測定素子	医療用リニアック高エネル ギー光子線 (6 MV, 10 MV, 15 MV)	$1 \text{ Gy} \sim 200 \text{ Gy}$ (0.02 Gy/s-0.08 Gy/s)		0.8 %	47720 H	

1)2009/5/1 時点での線源からの距離1 m、水深さ5 g/cm² での値であり、半減期(5.2714 年)に応じて減衰する。

			校正・測定	能力			32/30
種類	校正対象		線源	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日
	β線吸収線量		⁹⁰ Sr/ ⁹⁰ Yβ線	$1.1 \times 10^{-4} \mathrm{Gy} \sim 4.0 \times 10^{-2} \mathrm{Gy}$		2.8 %	
		β線測定器 β線検出素子	⁸⁵ Kr β線	$3.8 \times 10^{-4} \text{ Gy} \sim 1.4 \times 10^{-1} \text{ Gy}$		2.8 %	
放射線			¹⁴⁷ Pm β線	$2.0 \times 10^{-5} \text{ Gy} \sim 7.2 \times 10^{-3} \text{ Gy}$		4.8 %	2014年4月25日
//又为1///水	β線吸収線量率	β線測定器	⁹⁰ Sr/ ⁹⁰ Yβ線	$1.1 \times 10^{-5} \text{ Gy} \cdot \text{s}^{-1}$	1)	2.8 %	2014年4月25日
			⁸⁵ Kr β線	$3.8 \times 10^{-5} \text{ Gy} \cdot \text{s}^{-1}$	1)	2.8 %	
			¹⁴⁷ Pm β線	$2.0 \times 10^{-6} \text{ Gy} \cdot \text{s}^{-1}$	1)	4.8 %	

1)2006年2月の値であり、線源の減衰または線源の交換により変化する。

	校正・測定能力								
種類		校正対象(条件)	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日			
		放射能溶液 (γ線放出核種)	100 kBq/g \sim 2 MBq/g		0.2 % (⁶⁰ Co溶液)				
		ウエル型放射能測定装置	$1~\mathrm{MBq/g}\sim400~\mathrm{MBq/g}$		0.8 % (⁶⁰ Co溶液線源5 mL産総研標準アンプル)				
		y 線スペクトロメータ	20 Bq/g \sim 400 kBq/g		1.2 % (高純度Ge検出器)				
			2 Bq/kg∼10 Bq/kg		7 % (¹³⁷ Cs U8 容器)				
		環境レベル放射能	10 Bq/kg∼20 Bq/kg		5 % (¹³⁷ Cs U8 容器)				
	放射能濃度	(γ線放出核種)	20 Bq/kg~20 Bq/g		4 % (¹³⁷ Cs U8 容器)				
			20 Bq/g~100 kBq/g		4 % (¹³⁷ Cs 体積線源)				
		放射能溶液 (純α、β 又はX線核種)	20 Bq/g \sim 4 MBq/g		0.8 %(¹⁴ C溶液)				
		液体シンチレーションカウンタ	$20~\mathrm{kBq/g} \sim 400~\mathrm{MBq/g}$		1.2 % (¹⁴ C溶液)				
		放射性ガス (希ガス又はCH ₄)	$1~{ m Bq/cm}^3\sim 2~{ m kBq/cm}^3$		1.0 % (⁸⁵ Kr)				
		放射性ガスモニタ	$100 \text{ Bq/cm}^3 \sim 20 \text{ MBq/cm}^3$		1.4 % (⁸⁵ Kr)				
放射能	放射能 及び γ線放出率	γ 線スペクトロメータ校正用固体密封線源 (30 keV~2 MeV)	$2~\mathrm{kBq}\sim4~\mathrm{MBq}$		0.8 % (⁶⁰ Co点線源)				
		γ線スペクトロメータ (30 keV~2 MeV)	$2~\mathrm{kBq}\sim4~\mathrm{MBq}$		1.2 % (⁶⁰ Co点線源)				
			0.2 Bq∼1 Bq		7 % (¹³⁷ Cs U8 容器)	2014年4月25日			
	+4 64 44	環境レベル放射能	1 Bq∼2 Bq		5 % (¹³⁷ Cs U8 容器)				
	放射能	(γ線放出核種)	2 Bq∼2 kBq		4 % (¹³⁷ Cs U8 容器)				
			2 kBq∼200 kBq		4 % (¹³⁷ Cs 体積線源)				
		面線源	$200 \text{ s}^{-1} \sim 2 \times 10^4 \text{ s}^{-1}$		1.0 % (²⁴¹ Am電着線源)				
	荷電粒子 放出率	表面障壁型荷電粒子測定装置	$20 \text{ s}^{-1} \sim 2 \times 10^5 \text{ s}^{-1}$		1.2 % (²⁴¹ Am電着線源)				
		大面積荷電粒子測定装置	$200 \text{ s}^{-1} \sim 2 \times 10^4 \text{ s}^{-1}$		2.0 % (³⁶ Cl面線源)				
	放射能面密度	放射能面密度線源	$3~\mathrm{Bq/cm}^2\sim4~\mathrm{kBq/cm}^2$		1.0 % (²⁴¹ Am電着線源)				
		表面放射能測定装置	$0.3~\mathrm{Bq/cm^2}\sim 1~\mathrm{MBq/cm^2}$		2.0 % (²⁴¹ Am電着線源)				
		ウエル型放射能測定装置	$1~\mathrm{MBq/g}\sim400~\mathrm{MBq/g}$		0.8 % (⁶⁰ Co溶液線源5 mL産総研標準アンプル)				
	放射能濃度	y 線スペクトロメータ	20 Bq/g \sim 400 kBq/g	1)	1.2 % (高純度Ge検出器)				
放射能 (遠隔校正)		液体シンチレーションカウンタ	20 kBq/g ∼400 MBq/g		1.2 %(¹⁴ C溶液)				
	放射能及び γ線放出率	y 線スペクトロメータ (30 keV~2 MeV)	$2~\mathrm{kBq}\sim4~\mathrm{MBq}$	1)	1.2 %(⁶⁰ Co点線源)				
	荷電粒子放出率	大面積荷電粒子測定装置	$200 \text{ s}^{-1} \sim 20 \text{ ks}^{-1}$	1)	2.0 %(³⁶ Cl面線源)				

¹⁾ 遠隔校正サービスで使用できる核種と放射能は、顧客が規制当局から使用許可を受けているものに限る。

ſ				校正•測定能力				04/00	
	種類	校正対象		線源	校正範囲	備考	拡張不確かさ (<i>k</i> =2)	認定年月日	
		基準空気カーマ率	ョウ素125 密封小線源	ョウ素125 密封小線源	$0.3~\mu \text{Gy} \cdot \text{h}^{-1} \sim 2.0~\mu \text{Gy} \cdot \text{h}^{-1}$	1)	2.1 %	9014年	
	放射線	基準空気カーマ率	密封小線源測定器 ヨウ素125 用井戸型電 離箱式照射線量計	ョウ素125 密封小線源	0.3 μGy•h ⁻¹ ~ 15.0 μGy•h ⁻¹	1)	2.2 %	2014年 4月25日	

¹⁾線源1個当たりの放射能が11 MBq、13.1 MBq、15.3 MBqのもの。

		;				55/56
種類	校正范	対象(条件)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
	中性子放出率	中性子線源 (Am-Be)	$1.0 \times 10^3 \text{ s}^{-1} \sim 2.0 \times 10^7 \text{ s}^{-1}$		3.0 %	
	中任于灰山平	中性子線源 (²⁵² Cf)	$1.0 \times 10^3 \text{ s}^{-1} \sim 3.0 \times 10^7 \text{ s}^{-1}$		3.2 %	
	熱中性子フルエンス率	中性子測定器	$5.0 \times 10 \text{ cm}^{-2} \text{s}^{-1} \sim 1.0 \times 10^4 \text{ cm}^{-2} \text{s}^{-1}$		2.8 %	
		中性子測定器 (144 keV)	$2.3 \text{ cm}^{-2} \text{s}^{-1} \sim 1.8 \times 10^3 \text{ cm}^{-2} \text{s}^{-1}$		4.4 %	
		中性子測定器 (565 keV)	$6.3 \text{ cm}^{-2} \text{s}^{-1} \sim 5.1 \times 10^3 \text{ cm}^{-2} \text{s}^{-1}$		4.4 %	
	速中性子フルエンス率	中性子測定器 (5.0 MeV)	$2.5 \text{ cm}^{-2} \text{s}^{-1} \sim 2.0 \times 10^{3} \text{ cm}^{-2} \text{s}^{-1}$		6.2 %	
	ZETILI, 777 V.T	中性子測定器 (14.8 MeV)	$3.8 \text{ cm}^{-2} \text{s}^{-1} \sim 6.1 \times 10^3 \text{ cm}^{-2} \text{s}^{-1}$		3.2 %	
		中性子測定器 (Am-Be)	$4.1 \times 10^{-1} \text{ cm}^{-2} \text{s}^{-1} \sim 1.7 \times 10^{2} \text{ cm}^{-2} \text{s}^{-1}$		2.8 %	
		中性子測定器 (²⁵² Cf)	$2.0 \times 10^{-2} \text{ cm}^{-2} \text{s}^{-1} \sim 4.9 \times 10^{2} \text{ cm}^{-2} \text{s}^{-1}$		3.6 %	
	中性子個人線量当量率	中性子個人線量計 (Am-Be)	$6.0 \times 10^{-7} \text{ Svh}^{-1} \sim 2.5 \times 10^{-4} \text{ Svh}^{-1}$		8.5 %	
		中性子個人線量計 (²⁵² Cf)	$2.9 \times 10^{-8} \text{ Svh}^{-1} \sim 7.1 \times 10^{-4} \text{ Svh}^{-1}$		4.1 %	
中性子	中性子周辺線量当量率	中性子サーベイメータ (Am-Be)	$5.7 \times 10^{-7} \text{ Svh}^{-1} \sim 2.4 \times 10^{-4} \text{ Svh}^{-1}$		8.5 %	2014年4月25日
1 124 1	十 任 1 月	中性子サーベイメータ (²⁵² Cf)	$2.8 \times 10^{-8} \text{ Svh}^{-1} \sim 6.8 \times 10^{-4} \text{ Svh}^{-1}$		4.1 %	2011 17,120
	熱中性子フルエンス	中性子測定器	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		2.8 %	
		中性子測定器 (144 keV)	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		4.4 %	
		中性子測定器 (565 keV)	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		4.4 %	
	速中性子フルエンス	中性子測定器 (5.0 MeV)	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		6.2 %	
		中性子測定器 (14.8 MeV)	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		3.2 %	
		中性子測定器 (Am-Be)	$1.0 \times 10^3 \text{ cm}^{-2} \sim 1.0 \times 10^8 \text{ cm}^{-2}$		2.8 %	
		中性子測定器 (²⁵² Cf)	$1.0 \times 10^{3} \text{ cm}^{-2} \sim 1.0 \times 10^{8} \text{ cm}^{-2}$		3.6 %	
	中性子個人線量当量	中性子個人線量計 (Am-Be)	$4.1 \times 10^{-4} \text{ mSv} \sim 4.1 \times 10^{1} \text{ mSv}$		8.5 %	
	1 11 1 四八까里コ里	中性子個人線量計 (²⁵² Cf)	$4.0 \times 10^{-4} \text{ mSv} \sim 4.0 \times 10^{1} \text{ mSv}$		4.1 %	
	中性子周辺線量当量	中性子サーベイメータ (Am-Be)	$3.9 \times 10^{-4} \; \mathrm{mSv} \sim 3.9 \times 10^{1} \; \mathrm{mSv}$		8.5 %	
	1111/412/ 外里口里	中性子サーベイメータ (²⁵² Cf)	$3.9 \times 10^{-4} \text{ mSv} \sim 3.9 \times 10^{1} \text{ mSv}$		4.1 %	

火工事 来有の配定の		校正·測定能力			30/30
種類 (品目記号)	校正対象 (校正方法)	校正範囲	備考	拡張不確かさ (k=2)	認定年月日
	核磁気共鳴法及び 凝固点降下法による純度測定	0.980 kg/kg \sim 1.000 kg/kg		0.002 kg/kg	
	核磁気共鳴法による純度測定 (ガスクロマトグラフ法による 純度の検証を含む)	0.900 kg/kg \sim 1.000 kg/kg		0.002 kg/kg	
高純度有機標準物質	核磁気共鳴法による純度測定 (高速液体クロマトグラフ法による 純度の検証を含む)	0.900 kg/kg \sim 1.000 kg/kg		0.002 kg/kg	2013年4月26日
	凝固点降下法による純度測定 (ガスクロマトグラフ法による 純度の検証を含む)	0.980 kg/kg \sim 1.000 kg/kg		0.002 kg/kg	
	凝固点降下法による純度測定 (高速液体クロマトグラフ法による 純度の検証を含む)	0.980 kg/kg \sim 1.000 kg/kg		0.002 kg/kg	