PRTR Estimation Manual

22. Painting / Coating Processes

January 2001 Revised: March 2002

Federation of Electro Plating Industry Association, Japan

Contents

1.	Ou	utline of Painting/ Coating Processes	1
	1.1	Outline	1
	1.2	Class I Designated Chemical Substances(Class I Substances)	
		related to the Painting Processes	1
	1.3	Release source/Transfer source	3
	1.3	3.1 Release source	3
	1.3	3.2 Transfer source	3
2	Μ	ethod for Calculating Releases in the Painting Processes	5
	2.1	Concept Used for Calculating Releases and Transfers	5
	2.	1.1 Solvent ingredient	5
	2.	1.2 Pigment Component	6
	2.2	Procedure for Calculating Releases and Transfers	7
3	Са	Iculation Method for Releases and Transfers in Painting Process	11
	<ca< td=""><td>lculation Example 1> Water washing booth</td><td>15</td></ca<>	lculation Example 1> Water washing booth	15
		lculation Example 2> Water washing booth (use of multiple Painting machines)	
	<ca< td=""><td>lculation Example 3> Oil booth</td><td>28</td></ca<>	lculation Example 3> Oil booth	28
	<ca< td=""><td>lculation Example 4> Dry booth</td><td>33</td></ca<>	lculation Example 4> Dry booth	33
	<ca< td=""><td>lculation Example 5> Painting of Automobile Parts</td><td>38</td></ca<>	lculation Example 5> Painting of Automobile Parts	38
	<ca< td=""><td>lculation Example 6> Painting Process in Casting Industry</td><td>43</td></ca<>	lculation Example 6> Painting Process in Casting Industry	43
	<ca< td=""><td>lculation Example 7> Painting Process in Shipbuilding</td><td>46</td></ca<>	lculation Example 7> Painting Process in Shipbuilding	46

1. Outline of Painting/ Coating Processes

1.1 Outline

The objective of painting is to form a coating film on the surface of an object in order to protect the object and give a fine appearance. Painting may also have other special functions. There are various types of painting methods, and spray painting is currently used in many types of industrial painting. A flow diagram of the spray painting process is shown as an example in Fig. 1.

"Spray painting" consists of the painting operation itself followed by coated film drying. The paint used in the painting process is diluted with thinner, and solid portions in the paint form the coating film after the spraying operation. Annual amount of handled Class I Chemical Substances in paints and thinners is calculated based on the content of each chemical in paints and thinners, which should be obtained by MSDS and etc.

In the painting operation, various types of painting methods are used according to the shape, size, quality, and quantity of the object(s) to be painted. The "transfer efficiency" differs, in other words, the ratio of the quantity of the coated film formed on the object to the quantity of the paint sludge generated from overspray differs according to the differences in these operational conditions.

In "spray painting" inside a coating booth, most of the auxiliary solvent portions in the paints vaporizes to air. The solid portions over-sprayed are collected in the coating booth circulating solution (water or oil), and separated as paint sludge. So, vaporization of solvents in spraying operation and coated film drying process makes air emissions from total painting processes. In some cases, a vent gas from coated film drying process is treated by deodorizing device.

Paint sludge caused by overspray is either off-site transferred in waste, or incinerated. Releases to water bodies, or off-site transfers of waste oil occur at the time of renewal of circulating solution.

Residual paints and cleaning thinners are on-site or off-site recycled in some cases. Sometimes the (same) solvent is used to dilute paint and also to wash painting lines, so in this manual, the former is designated as thinner and the latter as cleaning thinner.

Many different types of painting processes are used in different industries, and so different figures are selected as transfer efficiency. For PRTR reporting, estimate the reasonable value referring to the calculation examples in this manual.

1.2 Class I Designated Chemical Substances (Class I Substances) related to the Painting Processes

Various kinds of chemical substances are used in painting processes, and typical Class I Designated Chemical Substances are shown in Table-1. On the occasion of actual reporting, it is necessary to confirm with MSDS etc.

Cabinet Order No.		CAS No.	Name of Substance
	227	108-88-3	Toluene
	63	1330-20-7	Xylene
	177	100-42-5	Styrene
	40	100-41-4	Ethyl benzene
	43	107-21-1	Ethylene glycol
	44	110-80-5	Ethyl cellosolve (ethylene glycol mono ethyl ether)
Solvent/	45	109-86-4	Methyl cellosolve (ethylene glycol mono methyl ether)
thinner	101	111-15-9	2-etoxyethyl acetate (ethylene glycol mono ethyl ether acetate)
	103	110-49-6	2-metoxyethyl acetate (ethylene glycol mono methyl ether acetate)
	22	107-18-6	Allyl alcohol
	16	141-43-5	Ethanolamine (2-aminoethanol)
	58	111-87-5	1-octanol
	109	100-37-8	2-(diethylamino) ethanol
	1		Zinc compounds(water soluble)
	60		Cadmium and its compounds
	68		Chromium and chromium(I)compounds
	69		Chromium(VI)compounds
	346		Molybdenum and its compounds
Pigment	232		Nickel compounds
g	230		Lead and its compounds
	304		Boron and its compounds
	311		Manganese and its compounds
	25		Antimony and its compounds
	100		Cobalt and its compounds
	272		Bis(2-ethyl hexyl) phthalate
	269		di-n-octyl phthalate
	270	84-74-2	di-n-butyl phthalate
	271		di-n-heptyl phthalate
	273		n-butyl = benzyl phthalate
	29		Bis phenol A
044 4 4 4	30		Bis phenol A type epoxy resin (liquid)
Others	55		2, 3-epoxy-1-propanol
	57		2, 3-epoxypropyl = phenyl ether
	46		Ethylenediamine
	114	108-91-8	Cyclohexylamine
	310	50-00-0	Formaldehyde
	9	103-23-1	Bis(2-ethyl hexyl) adipate
	354	126-73-8	Tri-n-butyl phosphate

Table-1 List of Class I Designated Chemical Substances used in the painting processes

1.3 Release source/Transfer source

The release source and transfer source in the painting process (wet booth) are shown in Fig. 1.

1.3.1 Release source

(1) Release to air:

Since organic solvents are used for the painting operation, the operation is generally performed in an enclosure (booth) provided with a local exhauster for reasons of fire prevention and health, and much of the solvent is released to air from this painting booth. Part of the solvent accompanying the coated film is released to air from the drying furnace in the coated film drying process. In some cases, it is removed with a deodorizing device.

(2) Release to water bodies:

Wastewater generated at the time of renewal of the circulating water in the coating booth is released to water.

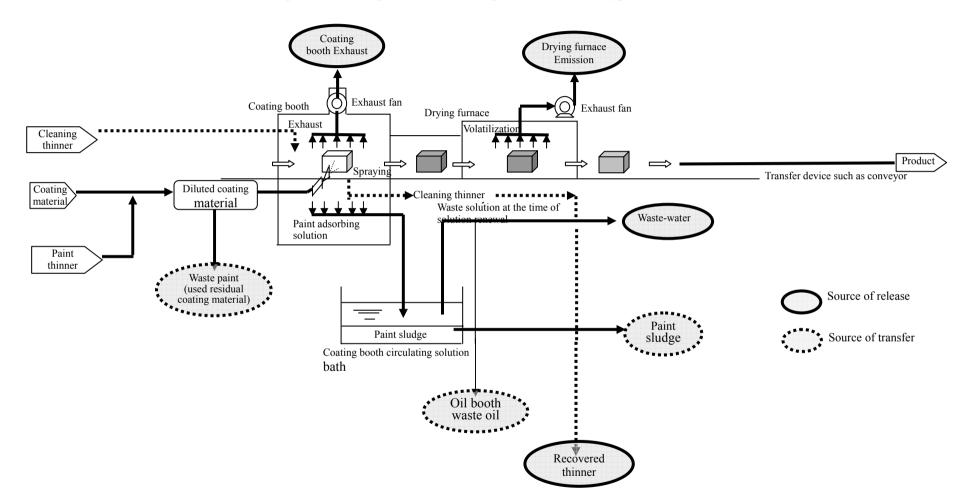
1.3.2 Transfer source

(1) Paint sludge:

Over-sprayed solid portions in paint are collected in the circulating solution and separated as paint sludge. The paint sludge is off-site transferred in waste.

(2) Waste paint:

Residual paint in a container, etc. is off-site transferred as waste .


(3) Oil booth waste oil:

Oil booth waste oil is generated at the time of renewal of circulating oil in the painting booth and transferred for recycling or off-site transferred in waste.

(4) Recovered thinner:

Thinner used for cleaning at the time of color change, etc. is recovered and transferred for recycling or off-site transferred in waste.

Fig.-1 Flow Diagram for Painting Processes (wet type booths)

2 Method for Calculating Releases in the Painting Processes

2.1 Concept Used for Calculating Releases and Transfers

2.1.1 Solvent ingredient

(1) Since quantity of the solvent ingredient i shipped in products cannot be considered, it is regarded as zero.

- (2) The releases (transfers) by renewal of the painting booth circulating solution is calculated by [waste solution amount] \times [solvent ingredient i concentration]. When the actual analyzed data of the solvent ingredient i concentration in the paint sludge is not available, water washing booth is deemed to have a concentration of 0.01 mass % (wi = 0.0001) and oil booth has 0.1 mass % (doi = 0.001) (refer to Reference-1)
- (3) The transfers contained in the paint sludge is estimated by [the amount of the paint sludge generated] \times [solvent ingredient i concentration]. When the actual analyzed data of the solvent ingredient i concentration in the paint sludge is not available, both water washing booth and oil booth are deemed to have a concentration of 0.2 mass % (dsi = 0.002) (refer to Reference-2)

Notes:

- When the amount of the paint sludge generated Ds (kg/year) is unknown, estimation is made based on the following formula using solid portion ratio in the paint (mass % ÷ 100) and transfer efficiency (mass % ÷ 100). Amount of the paint sludge generated = (annual amount of paint used - amount of
- waste paint generated) × (solid content rate) × (1 transfer efficiency).
 2) The transfer efficiency is calculated with reference to Table-6 and the estimation example (refer to note in (5)).
- (4) When a deodorizing device is used, the releases before deodorizing treatment A2i (kg/year) from a drying furnace is estimated using the transfer efficiency and drying furnace transfer rate based on the concept shown in Fig.-2 according to the working sheet (1) [19] (when the actual measurement for is not available, the estimation is made with = 0.1)

2.1.2 Pigment Component

(5) Solid portions in the paint equivalent to the transfer efficiency are painted on the product and all the residual over-sprayed amount is transferred as the paint sludge. (refer to Fig.-2)

Notes:

- 1) The transfer efficiency is calculated with reference to Table-6 and the calculation examples.
- When multiple types of painting machines are used in the same booth, the average transfer efficiency av defined in the following equation is used. The average transfer efficiency av
 - = (painting machine transfer efficiency × load rate)

Load rate = time of the painting machine used (minutes)

- /cycle time of the booth (minutes)
- or = amount of paint used in the painting machine (kg/cycle) /the total amount of paint used in the booth (kg/cycle)

Provided that : (load rate) = 1.0

(6) The amount of the pigment component j shipped in the products is calculated by [the annual amount of the pigment component j sprayed] × [transfer efficiency]. The transferred amount of the pigment component j contained in the paint sludge is calculated by subtracting the amount of the pigment component j shipped in the products from the sprayed amount per year.

Note:

1) The pigment is not generally dissolved into water and oil used as a circulating solution. In this test analysis, it is not detected

2.2 **Procedure for Calculating Releases and Transfers**

(1) The Class I Designated Chemical Substances contained in paints and thinner should be identified by MSDS, etc.

Notes:

- 1) For a determination as to whether or not it should be reported, refer to "Manual for Estimating Releases and Transfers for PRTR Chemicals" (hereinafter called "Basic Manual") prepared by the government.
- 2) Concerning the details of the Class I Designated Chemical Substances, refer to the reference in the basic manual, "List of Class I Designated Chemical Substances".

(2) On "Fig.-3 Flow sheet for estimating the releases and transfers in the painting process (p9)", line Nos. ([1] ~) corresponding to the target chemicals to be calculated is identified.

Note:

1) All the Nos. ([1] ~) in the working sheet (1), working sheet (2),calculation example, and working sheet entry example hereinafter correspond to the line Nos. ([1] ~) in the above-described Fig.-3.

(3) Amount (kg/year) of each calculation item (numeral value converted into metal as for pigment component) is estimated according to the calculation formulas shown in "Table-2 working sheet (1)" for each corresponding line No. identified in the above (2) with reference to the calculation example and the entry example of the working sheet (1).

Notes:

- 1) In calculation example 1-7, the one closest to the actual case should be selected.
- 2) "Calculation conditions" of the calculation target should be identified with reference to the calculation example.
 - a. The transfer efficiency should be estimated with reference to the calculation example and "Table-6 transfer efficiency table". (When estimation of the transfer efficiency is difficult, ask the Society of Chemical Engineers or painting machine manufacturer for their cooperation.)
 - b. The amount of the paint sludge generated should be identified (or calculated).
 - c. Other than the above, the necessary conditions for calculation should be identified.
- 3) Each calculation item amount (kg/year) for each corresponding line No. should be calculated with reference to the calculation example and entry example. (In the entry example, oblique lines are entered in the blank of a line No. that does not correspond.)
- 4) Concerning the metal conversion factor of the pigment component, refer to the reference material "Example of chemical substances composing a substance group" in the basic manual.
- 5) Concerning any unknown symbols, etc. in the working sheet (1), refer to "Table-4 Calculation Procedure in Detail" and "Table-5 Listings of the symbols"

(4) The above-described results (entry blank with *) is transferred and organized in "Table-3 Working sheet (2)", and the entered numeral values should be checked

according to the procedure shown in remarks 3).

(5) The results completed in the above-described Table-3 should be written on the reporting form established by competent ministerial ordinance.

Note:

1) The details are established by competent ministerial ordinance hereafter, but attention must be paid especially to the handling of the amounts transferred, amount recycled off-site, significant figures, etc.

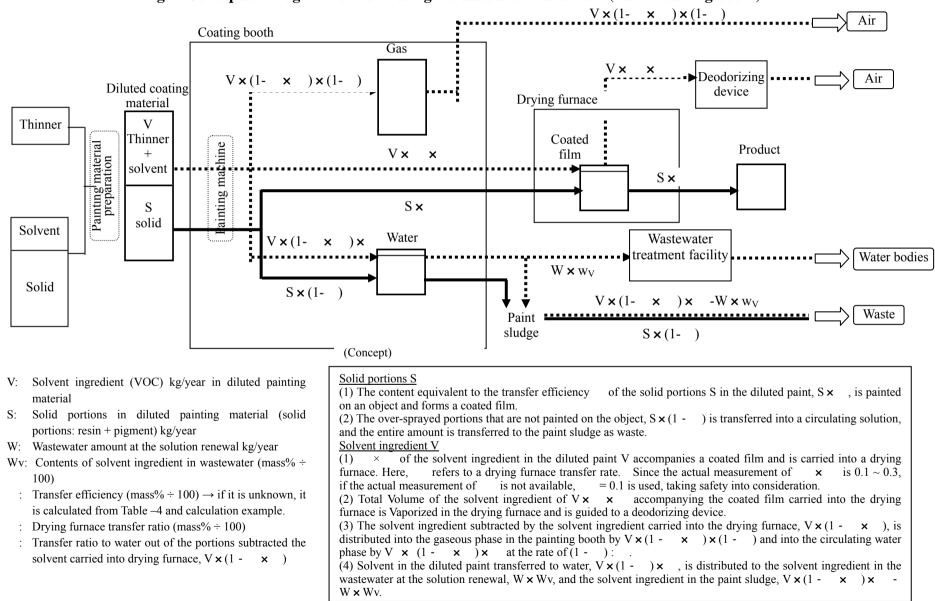


Fig.-2 Conceptual Diagram for Estimating Releases and Transfers (water washing booth)

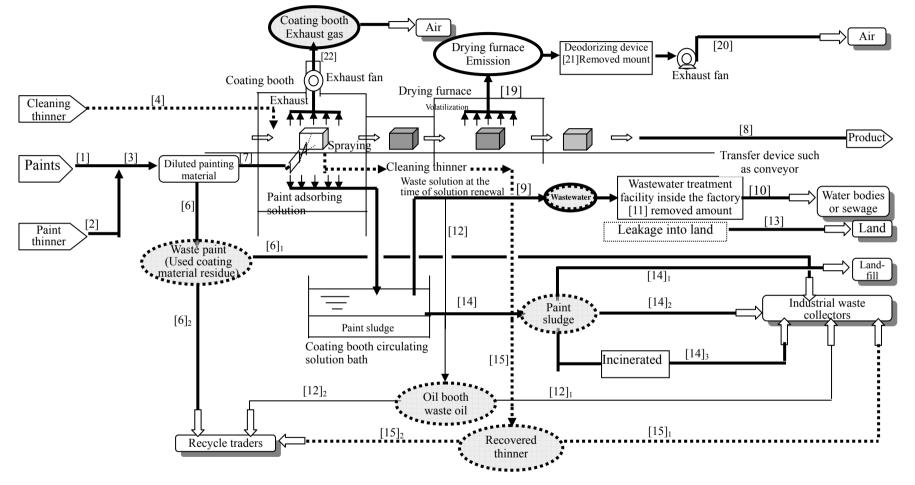


Fig.-3 Flow Sheet for Estimating the Releases and Transfers in the Painting Processes

3 Calculation Method for Releases and Transfers in Painting Process

		e e		s und Transfers	
Line		Solvent ingredient			=
No 1	Calculation item	Calculation formula 2	kg/Y	Calculation formula 2 3	kg/Y
[1]	handled	F1i= F1×f1i 4		F1j=F1xf1j 4	
[2]	Annual amount of handled Class I Substances in thinner	F2i= F2×f2i			
[3]	Annual amount of Class I Substances in diluted paint handled	[1] + [2]		The same as [1]	
[4]	Annual amount of Class I Substances in cleaning thinner handled	F3i= F3×f3i			
	Annual amount of Class I Substances handled	[3] + [4]	*	The same as [1]	*
	Amount of Class I Substances in waste paint	Dpi= Dp×dpi 5		Dpj=Dp×dpj 5	
	In case of handing over waste paint to industrial waste collector	D1i= D1×d1i	*	D1j= D1×d1j	*
[6] ₂	In case of sending waste paint off site for recycling	R1i= R1×r1i	*	R1j= R1×r1j	*
	Annual amount of Class I Substance in diluted paint sprayed	[3] - [6]		[3] - [6]	
	Amount of Class I Substances shipped as product			Pj= [7]×transfer efficiency 6	*
[9]	Releases before wastewater treatment 7	Wi= W×wi 8	*		
	Releases after wastewater treatment 7	Wi ^{treated} = Wi×(1-removal efficiency)	*		
[11]	Amount removed by wastewater treatment facility 9	[9] - [10]			
[12]	Amount of Class I Substances in oil booth waste oil	Doi= Do×doi 8			
[12] ₁	In case of handing over oil booth waste oil to industrial waste collector	D2i= D2×d2i	*		
[12] ₂	In case of recycling oil booth waste oil off site	R2i= R2×r2i	*		

Table-2 Work Sheet (1) --- Calculating Releases and Transfers ---

[13]	Amount leaked to land 10	L1i= L1×l1i	*	L1j= L1×l1j	*
[14]	Amount of Class I Substances in paint sludge generated	Dsi= Ds×dsi 11 12		[7] - [8]	
[14]1	In case of disposing of paint sludge as landfills	L2i= L2×I2i 12	*	L2j= L2×12j	*
[14] ₂	In case of handing over paint sludge to industrial waste collector	D3i= D3×d3i 12	*	D3j= D3×d3j	*
[14] ₃	In case of thermal disposal of paint sludge 13			D4j= D4×d4j	*
[15]	Amount of Class I Substances in recovered thinner	Dri= Dr×dri			
[15] ₁	In case of handing over recovered thinner to industrial waste collector	D5i= D5×d5i	*		
[15] ₂	In case of sending recovered thinner off-site for recycling	R3i= R3×r3i	*		
[16]	Total transfers as waste	D1i+D2i+D3i+D5i	*	D1j+D3j+D4j	*
[17]	Total transfers for recycling	R1i+R2i+R3i	*	The same as $[6]_2$	*
[18]	Potential releases to air	[5] - ([9] or [10]) - [13] - [14] ₁ - [16] - [17]			
[19]	Releases from dry furnace before deodorizing treatment	A2i= [7]× × 6			
[20]	Releases after deodorizing treatment 14	A2i ^{treated} = A2i×(1-removal efficiency)			
[21]	Removed amount by the deodorizing device	[19] - [20]	*		
[22]	Releases from coating booth	[18] - [19]			
[23]	Releases to air (without deodorizing device)	[18]	*		
[24]	Releases to air (with deodorizing device)	[22] +[20]	*		

Notes: (Entry blank marked with * should be transferred to working sheet (2))

- Concerning line No., refer to "Fig.-3 Flow sheet for calculating the releases in the painting process'
- 2 1) Concerning details of the symbols, refer to "Table-5 Listings of the symbols".
 - 2) Alphabetic capital letters represent variable quantity (kg/year).
 - F = paint, thinner; P = product; W = wastewater; D = waste; L = land; R = recycle; A = air3) The lower-case alphabetic characters refer to the content of the Class I Designated Chemical (mass% \div 100). f = Class I Designated Chemical Substance content in paint Substances and thinner; d = Class I Designated Chemical Substance content in waste; w = Class I Designated Chemical Substance content in wastewater; ... etc.
 - 4) The final lower-case alphabetic characters suffixes i and j show whether the Class I Designated Chemical Substance content i, in solvent, or content j in pigment, respectively.
- 3 When the Class I Designated Chemical Substance is used in pigment(content j), calculation should be made with metal converted value. As for metal conversion factor, refer to the reference material in the basic manual "Example of chemical substances composing a substance group".
- 4 When there are several different paint sludges including component i (or j), the value of the above-described formula is obtained for each type of paint sludge, and is totaled.
- 5 When the content dpi (or dpj) of the component i (or j) in the waste paint is unknown, the composition at the time of purchase is used.
- 6 1) Transfer efficiency is calculated with reference to "Table-6 transfer efficiency table" and the calculation example. Multiple different type of coating machines are used in the same booth, the average transfer efficiency _{av} is used (refer to (Note) of 1-2(5)).
 - 2) The idea is shown in Fig.-2.(concept), is the drying furnace transfer rate, and × of the Solvent ingredient V in the diluted paint is considered to be carried into the drying of
 - furnace in the coated film. When the value of is unknown, use = 0.1. 3) The entire amount of the Solvent ingredient $V \times \times$ accompanying accompanying the coating film carried into the drying furnace is vaporized in the drying furnace and guided to the deodorizing device.
- 7 When transferred to POTWs, it is reported as "the transferred amount of wastewater to sewage" not as the released amount to water bodies. In the case without a waste water treatment equipment, the value [9] and in the case with a wastewater treatment equipment, the value [10] are entered in either blank of C or D of the working sheet (2). When the removal efficiency of the wastewater treatment equipment is unknown, the value in the reference material in the basic manual "Removal efficiency ... of the typical wastewater treatment device" is used.
- 8 When measurement data of the content i is not available, wi = 0.0001 in the case of water washing booth, and doi = 0.001 in the case of oil booth are used (refer to Table-5).
- 9 In this case, since it is not decomposed by activated sludge etc., but is released to air by aeration. It should be added to the amount released to air, for reporting.
- 10 The release to land is obtained by estimating the leakage factors from accident records, repair records, daily reports, and sampling times.
- When the amount of the paint sludge Ds (kg/year) is unknown, estimation is made based on Ds 11 = (amount of paints used per year-amount of waste paint generated) \times solid portions ratio \times (1-).
- When analyzed data of the content is not available, dsi = 12i = d3i = 0.002 is used for both 12 water washing booth and oil booth (refer to Table-6). As for a furnace with the total grate area of $0.5m^2$ or more or the total burning capacity of
- 13 50kg/hour or more, the reporting of dioxins is also necessary.
- When the removal efficiency of the deodorizing device is unknown, the value in the reference material in the basic manual "Removal efficiency Reference-3 of the typical exhaust gas 14 device" is used.

Table-3 Work Sheet (2) - Summary -

Γ		(i)	(ii)	(iii) Releation (iii) Releation (iii) Releation (iii) (iii) Releation (iii) (iii) Releation (iiii) Releation (iii) Releation (ases and wastewater	(iv)	(v)		(iv)	Transfers co	ntained in wa	aste		(vii) Transfer	s for recyclin	9	(viii)	Releases to) air
		A Annual	В	C	D	E	F	G	н	l Delat	J	К	L	м	N	0	Р	Q	S With dec	odorizing
		amount of Class I Substances handled	Amount Shipped in product	Releases to water bodies		Releases to land	On-site landfills	Waste paint	Oil booth waste oil	Paint sludge (indusrial waste)	Paint sludge burnt ash	Recovered thinner	Total	Waste paint	Oil booth waste oil	Recovered thinner	Total	Without deodorizing treatment	treat R Removed amount	ment
		[5]	[8]	[9] or [10] into C	is entered Cor D	[13]	[14] ₁	[6] ₁	[12] ₁	[14] ₂	[14] ₃	[15] ₁	[16]	[6] ₂	[12] ₂	[15] ₂	[17]	[23]	[21]	[24]
	Toluene																			
e	Xylene																			
	Stylene																			
	Ethylbenzene																			
	Ethylene glycol																			
1	Ethanol amine																			ļ
	Ethyl cellosolve																			
	Methyl cellosolve																			1
	ETITIVI CEIIOSOIVE																			
	acetate Methyl cellosolve		-																	
	acetate			-																[]
-	Cadmium																			
	Chromium and																			
	chromium (III)compounds																			
	Chromium (VI)																			
	compounds																			
	Molybdenum Nickel																			
	Lead																			
	Boron																			
	Manganese																			
	Antimony																			
	Cobalt																			
	di-n-octyl phthalate																			
	Bis (2-ethyl hexyl) phthalate																			
	di-n-butyl																			
	di-n-heptyl phthalate di-n-heptyl phthalate n-butyl = benzy phthalate		1												1					
	phthalate																			
đ	phthalate																			
	Formaldehyde																			
	Adipic acid bis(2																			
	Formaldehyde Adipic acid bis(2 ethylhexyl) Tri-n-butyl																			
	phosphate																			
	orka)	1	1		l								I	1	1		1	I		·

(Remarks)

(Nemarks)
1) The entry blank with * of the releases and transfers calculated in the work sheet (1) is transferred in the above table.
2) Concerning wastewater, in the case where there is no wastewater treatment equipment, the value of line No[9] of the work sheet (1), and in the case with the wastewater treatment equipment, the value of [10] are transferred in C or D in the above table according to their destinations.
3) After all the entries are completed, G +H +I +J + K = L; M+N +O = P; A-{(C or D) + E+ F +L +P + (Q or S) 0 is confirmed for each Class I Designated Chemical Substance.
4) The above results should be reported based on the form established by the competent ministerial ordinance.

< Calculation Example 1> Water washing booth (1) Calculation Conditions

(1)	Calculation Conditions	
1)	Process	
	Booth	water washing booth, wastewater amount is 30,000kg/year
	Painting machine	air spray
	Object to be painted	flat metal plate
	Wastewater treatment equipr	
		activated sludge treatment (removal efficiency: 60%), treated water
		is released to water bodies
	Deodorizing device	combustion treatment (removal efficiency: 99.5%)
2)	Paint used	melamine alkyd resin paint PRTR• SK-008 (finish coating)
2)	Annual amount used	20,000kg/year (solid portions: 50 mass %)
		lead chromate (PbCrO ₄): 18.7 mass %
	Composition (pigment)	
		As chromium (VI) metal, 18.7×0.161 (hexavalent chromium
		conversion coefficient) = 3.0 mass%, As lead metal, 18.7×0.641
		(lead conversion coefficient) = 12 mass% (For the conversion
		coefficient, refer to reference material in the basic manual)
	(solvent)	xylene: 25 mass%
	Annual amount of the waste	
		300kg/year, the entire amount is assumed to be handed over to
•	D 1 1	industrial waste processor
3)		
	Annual amount used	10,000kg/year
	Composition	xylene: 20 mass%, chemical substances not included in the Class I
		Designated Chemical Substances: 80 mass%
4)		
	Annual amount used	20,000kg/year
	Composition	toluene: 60 mass%, chemical substances not included in the Class I
		Designated Chemical Substances: 40 mass%
	Amount of thinner recovered	
		6,000kg/year, the entire amount is assumed to be handed over to
		recycling firms.
5)	Estimation of transfer effic	
	The transfer efficiency is est	imated to be 40% (= 0.4) from Table-6 and process conditions.
6)	Paint sludge	
	Annual amount generated	5,910kg/year, the entire amount is assumed to be handed over to
		industrial waste processors.
	Amount of paint sludge gene	erated is calculated by the following formula when there is no data
	Amount of poi	int sludge ganerated
	= (annual am	ount of paint used - amount of waste paint generated)
		ions ratio \times (1 - transfer efficiency)
		$00) \times 0.5 \times (1 - 0.4)$
	= 5,910kg/ye	
7)	Others	

7) Others

It is assumed that there is no release to land and no on-site landfills.

(2) Calculation of the Releases and Transfers of Solvent ingredient **[Xylene]**

1) Calculation of the annual amount of xylene handled
[1] Xylene in paint
$20,000 \text{kg/year} \times 0.25 = 5,000 \text{kg/year}$
[2] Xylene in paint thinner $10,000 \text{kg/year} \times 0.20 = 2,000 \text{kg/year}$
[3] Xylene in diluted paint
[1] + [2] = 5,000 + 2,000 = 7,000 kg/year
[4] Xylene in cleaning thinner
$20,000 \text{kg/year} \times 0 = 0 \text{kg/year}$
[5] Annual amount of xylene handled
[3] + [4] = 7,000 + 0 = 7,000 kg/year
2) Waste paint (residual paint)
[6] Xylene in waste paint
$\frac{300 \text{kg/year} \times 0.25}{300 \text{kg/year}} = 75 \text{kg/year}$
$[6]_1$ Since the entire amount of waste paint is handed over to industrial waste processor,
$[6]_1 = [6] = 75 \text{kg/year}$
3) Amount of diluted paint sprayed[7] Amount of xylene sprayed
[7] Amount of xytene sprayed [3] - [6] = $7,000 - 75 = 6,925$ kg/year
4) Releases to water bodies
[9] Potential (before wastewater treatment) releases
$30,000 \text{kg/year} \times 0.0001 = 3.0 \text{kg/year}$
(when xylene content rate in wastewater is unknown, :0.01 mass%)
[10] Releases after wastewater treatment [9] \times (1 - removal efficiency) = 3.0 \times 0.4 = 1.2kg/year
[11] Removed amount by the wastewater treatment
[9] - [10] = 3.0 - 1.2 = 1.8 kg/year
5) Paint sludge
[14] Xylene in paint sludge
5,910kg/year × 0.002 = 12kg/year (when xylene content in paint sludge is unknown,: 0.2 mass%)
$[14]_2$ Since the entire amount of paint sludge is handed over to industrial waste
processors,
$[14]_2 = [14] = 12 \text{kg/year}$
6) Total of waste/recycle amount
[16] Total transfers as waste $[16] = [6]_1 + [14]_2 = 75 + 12 = 87 \text{kg/year}$
$[10]$ $[0]_{1} + [1+]_{2} = 7.5 + 12 = 67 \text{ kg/ycar}$

7) Releases to air [18] Potential releases to air [5] - [10] - [16] = 7,000 - 1.2 - 87 = 6,912 kg/year[19] Releases from drying furnace before deodorizing treatment $[7] \times \times = 6,925 \text{kg/year} \times 0.4 \times 0.1$ = 277 kg/year(when drying furnace transfer rate is unknown, 10% (= 0.1)) [20] Releases after deodorizing treatment $[19] \times (1 - \text{removal efficiency}) = 277 \times 0.005 = 1.4 \text{kg/year}$ [21] Removed amount by the deodorizing device [19] - [20] = 277 - 1.4= 276 kg/year[22] Releases from painting booth [18] - [19] = 6,912 - 277 = 6,635 kg/year[24] Releases to air [22] + [20] = 6,635 + 1.4 = 6,636kg/year

[Toluene]

Calculation of the annual amount of toluene handled
 [4] Toluene in cleaning thinner

 $\begin{array}{l} 20,000 \text{kg/year} \times 0.60 &= 12,000 \text{kg/year} \\ [5] \text{ Annual amount of toluene handled} \\ [3] + [4] &= 0 + 12,000 = 12,000 \text{kg/year} \end{array}$

2) Releases to water bodies

[9] Potential (before wastewater treatment) releases

 $30,000 \text{kg/year} \times 0.0001 = 3.0 \text{kg/year}$

(when toluene content in wastewater is unknown, :0.01 mass%)

[10] Releases after wastewater treatment

[9] × (1 - removal efficiency) = 3.0×0.4 = 1.2kg/year [11] Removed amount by the wastewater treatment facility

[9] - [10] = 3.0 - 1.2 = 1.8 kg/year

3) Paint sludge

[14] Toluene in paint sludge

5,910kg/year $\times 0.002$ = 12kg/year

(when toluene content in paint sludge is unknown, :0.2 mass%)

[14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors,

 $[14]_2 = [14] = 12$ kg/year

4) Recovered thinner

[15] Toluene in recovered thinner

6,000kg/year × 0.60 = 3,600kg/year [15]₂ Since the entire amount of recovered thinner is handed over to recycling firms, $[15]_2 = [15] = 3,600$ kg/year

5) Total of waste/recycle amount [16] Total transfers as waste [16] $= [14]_2$ = 12 kg/year[17] Total amount for recycling = 3,600kg/year [17] $= [15]_2$ 6) Releases to air [18] Potential releases to air [5] - [10] - [16] - [17] = 12,000 - 1.2 - 12 - 3,600 = 8,387 kg/year[22] Releases from painting booth [18] - [19] = 8,387 - 0 = 8,387kg/year [24] Releases to air [22] + [20] = 8,387 + 0 = 8,387kg/year (3) Calculation of the Releases and Transfers of Pigment Component [Hexavalent chromium] 1) Calculation of the annual amount of hexavalent chromium handled [1] Hexavalent chromium in paint $20,000 \text{kg/year} \times 0.030$ = 600 kg/year[3] Hexavalent chromium in diluted paint = [1] = 600 kg/year[3] [5] Annual amount of hexavalent chromium handled = [1] = 600 kg/year[5] 2) Waste paint(unused paint) [6] Hexavalent chromium in waste paint 300kg/year $\times 0.030$ = 9.0kg/year [6]1 Since the entire amount of waste paint is handed over to industrial waste processors, = [6] = 9.0kg/year $[6]_1$ 3) Amount of diluted paint sprayed [7] Amount of hexavalent chromium sprayed = 600 - 9.0 = 591 kg/year[3] - [6] 4) Amount shipped in products [8] Amount shipped in products [7] x(transfer efficiency) = 591×0.4 = 236kg/year 5) Paint sludge [14] Hexavalent chromium in paint sludge = 591 - 236 = 355 kg/year[7] - [8] [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_2 = [14] = 355 \text{kg/year}$

6) Total of waste/recycle amount

[16] Total transfers as waste

 $[16] = [6]_1 + [14]_2 = 9.0 + 355 = 364$ kg/year

[Lead]

1) Calculation of the annual amount of lead handled [1] Lead in paint $20,000 \text{kg/year} \times 0.12 = 2,400 \text{kg/year}$ [3] Lead in diluted paint =[1] = 2,400kg/year [3] [5] Annual amount of lead handled = [1] = 2,400kg/year [5] 2) Waste paint (residual paint) [6] Lead in waste paint $300 \text{kg/year} \times 0.12 = 36 \text{kg/year}$ [6]1 Since the entire amount of waste paint is handed over to industrial waste processors, = [6] = 36 kg/year[6]1 3) Amount of diluted paint sprayed [7] Amount of lead sprayed = 2400 - 36 = 2,364kg/year [3] - [6] 4) Amount shipped in products [8] Amount shipped in products [7] × (transfer efficiency) = $2,364 \times 0.4$ = 946kg/year 5) Paint sludge [14] Lead in paint sludge = 2,364 - 946 [7] - [8] = 1,418kg/year [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors. = [14] = 1,418kg/year $[14]_2$ 6) Total of waste/recycle amount [16] Total transfers as waste $[16] = [6]_1 + [14]_2 = 36 + 1,418 = 1,454$ kg/year

Work Sheet (1) Entry Example < Calculation Example 1> --- Water washing booth 1/2 ---

_				Dismont component i how	
		Solvent ingredient i = xyle	ene	Pigment component j = hexa chromium compound	
Line No	Calculation item	Solvent ingredient i	1	Pigment component j	
1		Calculation formula 2	kg/Y	Calculation formula 2 3	Metal kg/Y
[1]	paint nandled	F1i= F1 × f1i 4	5,000	F1j= F1 × f1j 4	600
[2]	Annual amount of handled Class I Substances in thinner	F2i= F2 × f2i	2,000		
[3]	Annual amount of Class I Substances in diluted paint handled	[1] + [2]	7,000	The same as [1]	600
[4]	Annual amount of Class I Substances in cleaning thinner handled	F3i= F3 × f3i	0		
[5]	Annual amount of Class I Substances handled	[3] + [4]	*7,000	The same as [1]	* 600
[6]	Amount of Class I Substances in waste paint	Dpi= Dp × dpi 5	75	Dpj= Dp × dpj 5	9
[6]1	When handing over waste paint to industrial waste collector	D1i= D1 × d1i	* 75	D1j= D1 × d1j	* 9.0
[6] ₂	When sending waste paint off site for recycling	R1i= R1 × r1i	•	R1j= R1 × r1j	•
[7]	Annual amount of Class I Substance in diluted paint sprayed	[3] - [6]	6,925	[3] - [6]	591
[8]	Amount of Class I Substances shipped as product			Pj= [7] × transfer efficiency 6	* 236
[9]	Releases before wastewater treatment	Wi= W × wi 8	* 3.0		
[10]	Releases after wastewater treatment 7	Witreated	* 1.2		
[11]	Amount removed by wastewater treatment facility 9	= Wi x (1-removal efficiency) [9] - [10]	1.8		
[12]	Amount of Class I Substances in oil booth waste oil	Doi= Do × doi 8			
[12]1	When handing over oil booth waste oil to industrial waste collector	D2i= D2 × d2i	•		
[12]2	When requeling all beath weath all off	R2i= R2 × r2i	•		
[13]	Amount leaked to land 10	L1i= L1 × I1i	•	L1j= L1 × I1j	•
[14]	Amount of Class I Substances in paint sludge generated	Dsi= Ds × dsi 11 12	12	[7] - [8]	355
[14] ₁	When disposing of paint sludge as landfills	L2i= L2 × I2i 12	•	L2j= L2 × I2j	•
[14]2	When handing over paint sludge to industrial waste collector	D3i= D3 × d3i 12	* 12	D3j= D3 × d3j	* 355
[14]3	When thermal dispessal of point aludge			D4j= D4 × d4j	•
[15]	Amount of Class I Substances in recovered thinner	Dri= Dr × dri			
[15] ₁	When handing over recovered thinner to industrial waste collector	D5i= D5 × d5i	•		
[15]2	When sending recovered thinner off-site for recycling	R3i= R3 × r3i			
[16]	Total transfers as waste	D1i+D2i+D3i+D5i	* 87	D1j+D3i+D4j	* 364
[17]	Total transfers for recycling	R1i+R2i+R3i	•	The same as [6] ₂	•
[18]	Potential releases to air	[5] - ([9] or [10]) - [13] - [14] ₁ - [16] - [17]	6,912		
[19]	Releases from dry furnace before deodorizing treatment	A2i= [7] × × 6	277		
[20]	Releases after deodorizing treatment 14	A2i ^{treated} = A2i × (1-removal efficiency)	1.4		
[21]	Removed amount by the deodorizing device	[19] - [20]	* 275.6		
[22]	Releases from coating booth	[18] - [19]	6,635		
[23]	Releases to air (without deodorizing device)	[18]	•		
[24]	Releases to air (with deodorizing device)	[22] + [20]	*6,636		

Work Sheet (1) Entry Example < Calculation example 1> --- Water washing booth 2/2 ---

C				Pigment component j	
		Solvent ingredient i = tolue	ene	= lead compound	
Line	Coloulation item	Solvent ingredient i	r	Pigment component j	
No 1	Calculation item	Calculation formula 2	kg/Y	Calculation formula 2 3	Metal kg/Y
[1]	Annual amount of Class I Substances in paint handled	F1i= F1 × f1i 4		F1j= F1 × f1j 4	2,400
[2]	Annual amount of handled Class I Substances in thinner	F2i= F2 × f2i			
[3]	Annual amount of Class I Substances in diluted paint handled	[1] + [2]		The same as [1]	2,400
[4]	Annual amount of Class I Substances in cleaning thinner handled	F3i= F3 × f3i	12,000		
[5]	Annual amount of Class I Substances handled	[3] + [4]	*12,000	The same as [1]	* 2,400
[6]	Amount of Class I Substances in waste paint	Dpi= Dp × dpi 5		Dpj= Dp × dpj 5	36
[6]1	When handing over waste paint to industrial waste collector	D1i= D1 × d1i	•	D1j= D1 × d1j	* 36
[6] ₂	When conding weets paint off site for	R1i= R1 × r1i	•	R1j= R1 × r1j	•
[7]	Annual amount of Class I Substance in diluted paint sprayed	[3] - [6]		[3] - [6]	2,364
[8]	Amount of Class I Substances shipped as product			Pj= [7] × adhesion efficiency 6	* 946
[9]	Releases before wastewater treatment 7	Wi= W × wi 8	* 3.0		
[10]	Releases after wastewater treatment 7	Wi ^{treated} = Wi(1-removal efficiency)	* 1.2		
[11]	Amount removed by wastewater treatment facility 9	[9] - [10]	1.8		
[12]	Amount of Class I Substances in oil booth waste oil	Doi= Do × doi 8			
[12]1	When handing over all booth waste all	D2i= D2 × d2i	•		
[12] ₂	When neareding all beath meats all aff	R2i= R2 × r2i	•		
[13]	Amount leaked to land 10	L1i= L1 × I1i	•	L1j= L1 × I1j	•
[14]	Amount of Class I Substances in paint sludge generated	Dsi= Ds x dsi 11 12	12	[7] - [8]	1,418
[14]1	When disposing of paint sludge as landfills	L2i= L2 × I2i 12	•	L2j= L2 × I2j	•
[14] ₂	When bending over point eludge to	D3i= D3 × d3i 12	• 12	D3j= D3 × d3j	* 1,418
[14]3	When thermal disposal of paint cludge			D4j= D4 × d4j	•
[15]	Amount of Class I Substances in recovered thinner	Dri= Dr × dri	3,600		
[15] ₁	When handing over recovered thinner to	D5i= D5 × d5i	•		
[15] ₂	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R3i= R3 × r3i	*3,600		
	Total transfers as waste	D1i+D2i+D3i+D5i	* 12	D1j+D3i+D4j	* 1,454
	Total transfers for recycling	R1i+R2i+R3i	*3,600	The same as [6] ₂	•
[18]	Potential releases to air	[5]-([9]or[10])-[13] - [14] ₁ - [16] - [17]	8,387		
[19]	Releases from dry furnace before deodorizing treatment	A2i= [7] × × 6			
[20]	Releases after deodorizing treatment	A2i ^{treated} = A2i(1-removal efficiency)			
[21]	Removed amount by the deodorizing device	[19] - [20]	•		
[22]	Releases from coating booth	[18] - [19]	8,387		
[23]	Releases to air (without deodorizing device)	[18]	•		
[24]	Releases to air (with deodorizing	[22] + [20]	8,387. 8 387		
	device)	<u> </u>	8,387		

Work Sheet (2) Entry Example

<Calculation Example 1> --- Water washing booth ---

		(i)	(ii)	(iii) Releation (iii) Releatio	ases and wastewater	(iv)	(v)		(iv)	Transfers co	ntained in w	aste		(vii) Transfers	s for recyclin	g	(viii)	Releases to) air
		A	В	C	D	E	F	G	н	I	J	к	L	М	N	0	Р	Q		
		Annual amount of Class I Substances handled	Shipped in	bodies	to POTWs	Releases to land	On-site landfills	Waste paint	Oil booth waste oil	Paint sludge (indusrial waste)	Paint sludge burnt ash	Re-covered thinner	Total	Waste paint	Oil booth waste oil	Recovered thinner	Total	Without deodorizing treatment	With dec treat R Removed amount	dorizing ment
		[5]	[8]	[9] or [10] into C	is entered C or D	[13]	[14] ₁	[6] ₁	[12] ₁	[14] ₂	[14] ₃	[15] ₁	[16]	[6] ₂	[12] ₂	[15] ₂	[17]	[23]	[21]	[24]
	Xylene	7,000		1.2			\langle	75	\langle	12			87		\langle				276	6,636
	Toluene	12,000		1.2			\langle			12		\sim	12		\sim	3,600	3,600		\sim	8,387
Der																				
Solvent/thinner																				
												-								
No																				
S																				
-	Hexavalent chromium	600	236				\sim	9		355	\sim		364							
	Lead	2,400					\sim	36		1,418	\sim		1,454				\sim			
Ħ																				
Pigment																				
ā																				
1																				
1																				
<u> </u>																				
1																				
1																				
ers e				<u> </u>																
Others				<u> </u>																
Ĺ																				
1				<u> </u>																
1				+																
L	omorka)	I	I	1	I	I	1	I			1	1	1	I	1	I	í	I		

(Remarks)

The entry blank with * of the releases and transfers calculated in the work sheet (1) is transferred in the above table.
 Concerning wastewater, in the case where there is no wastewater treatment facility, the value of line No[9] of the work sheet (1), and in the case with the wastewater treatment facility, the value of [10] are transferred in U or E in the above table according to their .destinations.

< Calculation Example 2> Water washing booth (use of multiple Painting machines)

(1) Calculation Conditions

1)	Process	
	Booth	water washing booth, wastewater amount is 30,000kg/year
		(replacement solution amount 5,000kg/time × two times/year)
	Painting machine	air airless electrostatic air
	Object to be painted	aluminum building material aluminum building material
		aluminum building material
	Load rate	30% 30% 40%
	Wastewater treatment equip	oment
	1 1	None. All the amount is released to POTWs.
	Deodorizing device	combustion treatment (removal efficiency: 99.5%)
2)	Paint used	melamine alkyd resin paint PRTR SK-008 (finish coating)
-	Annual amount used	20,000kg/year (solid portions: 50 mass %)
	Composition (pigment)	lead chromate (PbCrO ₄): 18.7 mass%
		As hexavalent chromium metal, 18.7×0.161 (hexavalent chromium
		conversion factor) = $3.0 \text{ mass}\%$,
		As lead metal, 18.7×0.641 (lead conversion factor) = 12 mass%
		(concerning conversion factor, refer to reference material in the basic
		manual)
	(solvent)	xylene: 25 mass%
	Annual amount of waste pa	
		300kg/year, the entire amount is assumed to be handed over to
		industrial waste dealers
3)	Paint thinner	
	Annual amount used	10,000kg/year
	Composition	xylene: 20 mass%, other chemical substances that do not include any
1		Class I Substances: 80 mass%
4)	Cleaning thinner Annual amount used	20.0001/2/2027
		20,000kg/year
	Composition	toluene: 60 mass%,: other chemical substances that do not include any Class I Substances: 40 mass%
	Amount of thinner recovered	
	Amount of unimer recovered	6,000kg/year, the entire amount is assumed to be handed over to
		recycling firms.
5)	Estimation of average trai	
5)		ency is calculated to be 42% from Table-4 and process conditions. $av =$
	$0.3 \times 0.2 + 0.4 \times 0.3 + 0.6$	
6)	Paint sludge	· 0.+ 0.+2
0)	e	5,710kg/year, the entire amount is assumed to be handed over to
		industrial waste processors.
	Amount of paint sludge ger	•
		nount of paint used - amount of waste paint)
		tions ratio) \times (1 - transfer efficiency)
		$(00) \times 0.5 \times (1 - 0.42)$
	= 5,710 kg/ye	
7)	Others	

It is assumed that there is no release to land and no on-site landfills

(2) Calculation of Releases and Transfers of Solvent ingredient [Xylene] 1) Calculation of the annual amount of xylene handled [1]Xylene in paint 20.000kg/year × 0.25 = 5,000kg/year [2] Xylene in paint thinner 10,000kg/year × 0.20 = 2,000kg/year [3] Xylene in diluted paint [1] + [2] = 5,000 + 2,000 = 7,000kg/year [4] Xylene in cleaning thinner 20,000kg/year $\times 0$ = 0 kg/year[5] Annual amount of xylene handled [3] + [4] = 7,000 + 0= 7,000kg/year 2) Waste paint (unused paint) [6] Xylene in waste paint 300kg/year $\times 0.25$ = 75 kg/year[6] Since the entire amount of waste paint is handed over to industrial waste processor, $[6]_1 = [6]$ = 75 kg/year3) Amount of diluted paint sprayed [7] Amount of xylene sprayed [3] - [6] = 7,000 - 75 = 6,925 kg/year4) Releases to water bodies [9] Potential (before wastewater treatment) releases $30,000 \text{kg/year} \times 0.0001 = 3.0 \text{kg/year}$ (when xylene content in wastewater is unknown,: 0.01 mass%) 5) Paint sludge [14] Xylene in paint sludge 5,710kg/year × 0.002 = 11 kg/vear(when xylene content in paint sludge is unknown,: 0.2 mass%) [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_{2}$ = [14]= 11 kg/year6) Total of waste/recycle amount [16] Total transfers as waste [16] $= [6]_1 + [14]_2 = 75 + 11 = 86$ kg/year 7) Releases to air [18] Potential releases to air [5] - [9] - [16] - [17] = 7,000 - 3.0 - 86 - 0 = 6,911 kg/year[19] Releases from drying furnace before treatment [7] × $= 6,925 \text{kg/year} \times 0.42 \times 0.1 = 291 \text{kg/year}$ \times (when drying furnace transfer rate is unknown, 10% (= 0.1)) [20] Releases after deodorizing treatment $[19] \times (1 - \text{removal efficiency}) = 291 \times 0.005$ = 1.5 kg/year[21] Amount removed by deodorizing device [19] - [20] = 291 - 1.5 = 290 kg/year[22] Releases from painting booth [18] - [19] = 6,911 - 291 = 6,620 kg/year

[24] Releases to air [22] + [20] = 6,620 + 1.5 = 6,622 kg/year[Toluene] 1) Calculation of the annual amount of toluene handled [4] Toluene in cleaning thinner $20,000 \text{kg/year} \times 0.60$ = 12,000 kg/year[5] Annual amount of toluene handled [3] + [4] = 0 + 12,000 = 12,000kg/year 2) Releases to water bodies [9] Potential (before wastewater treatment) releases $30,000 \text{kg/year} \times 0.0001 = 3.0 \text{kg/year}$ (when toluene content in wastewater is unknown, :0.01 mass%) 3) Paint sludge [14] Toluene in paint sludge 5,710kg/year × 0.002 = 11 kg/year(when toluene content in paint sludge is unknown, :0.2 mass%) [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_2$ = [14] = 11 kg/year4) Recovered thinner [15] Toluene in recovered thinner 6,000kg/year $\times 0.60$ = 3,600kg/year [15]₂ Since the entire amount of recovered thinner is handed over to recycling firms, = 3.600kg/year $[15]_{2}$ = [15]5) Total of waste/recycle amount [16] Total transfers as waste = 11 kg/year[16] $= [14]_2$ [17] Total amount for recycling = 3,600kg/year [17] $= [15]_2$ 6) Releases to air [18] Potential releases to air [5] - [9] - [16] - [17] = 12,000 - 3.0 - 11 - 3,600 = 8,386kg/year [22] Releases from painting booth [18] - [19] = 8,386 - 0 = 8,386kg/year [24] Releases to the air [22] + [20] = 8,386 + 0 = 8,386kg/year

(3) Calculation of Releases and Transfers of Pigment Component [Hexavalent chromium] 1) Calculation of annual amount of hexavalent chromium handled [1] Hexavalent chromium in paint $20,000 \text{kg/year} \times 0.030$ = 600 kg/year[3] Hexavalent chromium in diluted paint = 600 kg/year[3] = [1] [5] Annual amount of hexavalent chromium handled [5] = [1] = 600 kg/year2) Waste paint (residual paint) [6] Hexavalent chromium in waste paint 300kg/year $\times 0.030$ = 9.0kg/year [6]1 Since the entire amount of waste paint is handed over to industrial waste processors, $[6]_1$ = [6] = 9.0 kg/year3) Amount of diluted paint sprayed [7] Amount of hexavalent chromium spraved [3] - [6] = 600 - 9.0 = 591kg/year 4) Amount shipped as products [8] Amount shipped as products [7] × transfer efficiency = 591×0.42 = 248kg/year 5) Paint sludge [14] Hexavalent chromium in paint sludge [7] - [8] = 591 - 248 = 343 kg/year[14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_2$ = 343kg/year = [14] 6) Total of waste/recycle amount [16] Total transfers in waste $[16] = [6]_1 + [14]_2 = 9.0 + 343 = 352 \text{ kg/year}$ [Lead] 1) Calculation of the annual amount of lead handled [1] Lead in paint $20,000 \text{kg/year} \times 0.12$ = 2,400kg/year [3] Lead in diluted paint [3] = [1] = 2,400kg/year [5] Annual amount of lead handled = 2,400kg/year [5] = [1] 2) Waste paint (unused paint)) [6] Lead in waste paint 300kg/year $\times 0.12$ = 36kg/year [6]1 Since the entire amount of waste paint is handed over to industrial waste processors. = 36kg/year [6]1 = [6] 3) Amount of diluted paint sprayed [7] Amount of lead sprayed [3] - [6] = 2400 - 36 = 2.364kg/year

4) Amount shipped in products

[8] Amount shipped in products

[7] × transfer efficiency =
$$2,360 \times 0.42 = 991$$
kg/year

- 5) Paint sludge
 - [14] Lead in paint sludge

[7] - [8] = 2,364 - 991 = 1,373kg/year

[14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors,

 $[14]_2 = [14] = 1,373$ kg/year

- 6) Total of waste/recycle amount
 - [16] Total transfers in waste

 $[16] = [6]_1 + [14]_2 = 36 + 1,373 = 1,409$ kg/year

< Calculation Example 3> Oil booth (1) Calculation Conditions

Cal	culation Conditions						
1)	Process						
	Booth	oil booth, waste oil generation amount is 10,000kg/year					
		(Replaced solution amount 5000kg/time × twice/year)					
	Painting machine	air spray					
	Object to be painted	small bore joint component					
	Deodorizing device	combustion treatment (rate of removal : 99.5%)					
2)	Paint used	melamine alkyd resin paint PRTR• SK-008 (under coating)					
,	Annual amount used	20,000kg/year (solid portions: 50 mass%)					
	Composition (pigment)	zinc chromate ($ZnCrO_4$): 7.0 mass%					
	composition (pignient)	As hexavalent chromium metal, 7.0×0.287 (hexavalent chromium					
		conversion factor) = $2.0 \text{ mass}\%$ (For the conversion factor, refer to the					
		reference material in the basic manual. Since zinc chromate has					
		water solubility of less than 1 mass%, it is not included in "water					
		soluble compound of zinc")					
	(solvent)	xylene: 25 mass%					
	Annual amount of waste pa						
	Annual annount of waste pa	300kg/year, the entire amount is assumed to be handed over to					
		industrial waste dealers					
3)	Paint thinner	industrial waste dealers					
3)	Annual amount used	10 000kg/yoor					
	Composition	10,000kg/year toluene: 10 mass%, xylene: 30 mass%, other chemical substances that					
	Composition	are not included in the Class I Substances: 60 mass%					
4)	Cleaning thinner	are not included in the Class I Substances. 00 mass/0					
4)	Cleaning thinner	20.0001-2/2027					
	Annual amount used	20,000kg/year					
	Composition	toluene: 60 mass%, other chemical substances that are not included in					
	A	the Class I Substances: 40 mass%					
	Amount of recovered thinned	-					
		6,000kg/year, the entire amount is assumed to be handed over to					
5)		recycling firms.					
5)	Estimation of transfer effi						
0	The transfer efficiency is es						
6)	Amount of paint sludge ge						
	Annual amount generated	6,900kg/year, the entire amount is assumed to be handed over to					
		industrial waste processors					
	If the amount of paint sludge generated is unknown, estimation should be made from the following						
	formula:						
	Amount of paint sludge ger						
		unt of paint used-amount of waste paint)					
		ons ratio) \times (1 – transfer efficiency)					
		$(0) \times 0.5 \times (1 - 0.3)$					
	= 6,900kg/year	ſ					
7)	Others						

7) Others

It is assumed that there is no release to land nor on-site landfills.

(2) Calculation of Releases and Transfers of Solvent ingredient [Xvlene] 1) Calculation of the annual amount of xylene handled [1] Xylene in paint $20,000 \text{kg/year} \times 0.25 = 5,000 \text{kg/year}$ [2] Xylene in paint thinner $10,000 \text{kg/year} \times 0.30 = 3,000 \text{kg/year}$ [3] Xylene in diluted paint [1] + [2]= 5,000 + 3,000 = 8,000kg/year [4] Xylene in cleaning thinner 20,000kg/year $\times 0$ = 0 kg/year[5] Annual amount of xylene handled = 8,000 + 0 = 8,000kg/year [3] + [4]2) Waste paint (residual paint) [6] Xylene in waste paint 300kg/year $\times 0.25$ = 75 kg/year[6] Since the entire amount of waste paint is handed over to industrial waste processor, = [6] = 75 kg/year[6]1 3) Amount of diluted paint sprayed [7] Amount of xylene sprayed [3] - [6] = 8,000 - 75 = 7,925kg/year 4) Oil booth waste oil [12] Xylene in oil booth waste oil $10,000 \text{kg/year} \times 0.001 = 10 \text{kg/year}$ (when xylene content in waste oil is unknown,: 0.1 mass%) [12]₂ Since the entire amount of oil booth waste oil is handed over to recycling firms, = [12]= 10 kg/year $[12]_2$ 5) Paint sludge [14] Xylene in paint sludge $6,900 \text{kg/year} \times 0.002 = 14 \text{kg/year}$ (when xylene content in paint sludge is unknown,: 0.2 mass%) [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors. $[14]_2$ = [14]= 14kg/year 6) Total of waste/recycle amount [16] Total transfers as waste $= [6]_1 + [14]_2$ = 75 + 14 = 89 kg/year[16] [17] Total transfers for recycling = 10 kg/year[17] $= [12]_2$ 7) Releases to air [18] Potential releases to air [5] - [16] - [17] = 8,000 - 89 - 10 = 7,901kg/year [19] Releases from drying furnace before treatment $= 7,925 \text{kg/year} \times 0.3 \times 0.1$ [7] × \times = 238 kg/year(when drying furnace transfer rate is unknown, 10% (= 0.1)) [20] Releases after deodorizing treatment $[19] \times (1 - \text{removal efficiency}) = 238 \times 0.005$ = 1.2 kg/year[21] Amount removed in deodorizing device

[19] - [20] = 238 - 1.2 = 237 kg/year[22] Releases from painting booth [18] - [19] = 7,901 - 238 = 7,663 \text{kg/year} [24] Releases to air [22] + [20] = 7,663 + 1.2 = 7,664 \text{kg/year}

[Toluene]

1) Calculation of annual amount of toluene handled [1] Toluene in paint 20,000kg /year $\times 0$ = 0 kg/year[2] Toluene in paint thinner $10,000 \text{kg/year} \times 0.10$ = 1,000kg/year [3] Toluene in diluted paint = 0 + 1,000 = 1000kg/year [1] + [2][4] Toluene in cleaning thinner = 12,000 kg/year $20,000 \text{kg/year} \times 0.60$ [5] Annual amount of toluene handled [3] + [4]= 1,000 + 12,000 = 13,000kg/year 2) Amount of diluted paint sprayed [7] Amount of toluene sprayed = [3]= 1.000kg/year [7] 3) Oil booth waste oil [12] Toluene in oil booth waste oil $10,000 \text{kg/year} \times 0.001 = 10 \text{kg/year}$ (When toluene content in waste oil is unknown.: 0.1 mass%) [12]₂ Since the entire amount of oil booth waste oil is handed over to recycling firms = [12]= 10 kg/year $[12]_2$ 4) Paint sludge [14] Toluene in paint sludge $6,900 \text{kg/year} \times 0.002 = 14 \text{kg/year}$ (when toluene content in paint sludge is unknown, :0.2 mass%) [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors. $[14]_2$ = [14]= 14kg/year 5) Recovered thinner [15] Toluene in recovered thinner 6,000kg/year $\times 0.60$ = 3,600kg/year [15]₂ Since the entire amount of recovered thinner is handed over to recycling firms, = 3,600kg/year $[15]_2$ = [15]6) Total of waste/recycle amount [16] Total transfers as waste = 14kg/year [16] $= [14]_2$ [17] Total transfers for recycling $= [12]_2 + [15]_2 = 10 + 3600$ = 3.610kg/year [17] Releases to air 7) [18] Potential releases to air [5] - [16] - [17] = 13,000 - 14 - 3,610 = 9,376kg/year [19] Releases from drying furnace before treatment

 $[7] \times \times = 1,000 \text{kg/year} \times 0.3 \times 0.1 = 30 \text{kg/year}$ (When drying furnace transfer rate is unknown, :10% (=0.1)) [20] Releases after deodorizing treatment [19] × (1 - removal efficiency) = 30 × 0.005 = 0.2 \text{kg/year} [21] Amount removed by deodorizing device [19] - [20] = 30 - 0.2 = 30 \text{kg/year} [22] Releases from painting booth [18] - [19] = 9,376 - 30 = 9,346 \text{kg/year} [24] Releases to air [22] + [20] = 9,346 + 0.2 = 9,346 \text{kg/year}

(3) Calculation of the Releases and Transfers of Pigment Component [Hexavalent chromium] 1) Calculation of the annual amount of hexavalent chromium handled [1] Hexavalent chromium in paint $20,000 \text{kg/year} \times 0.020 = 400 \text{kg/year}$ [3] Hexavalent chromium in diluted paint = [1] = 400 kg/year[3] [5] Annual amount of hexavalent chromium handled [5] = [1] = 400 kg/year2) Waste paint (unused paint) [6] Hexavalent chromium in waste paint 300kg/year $\times 0.020$ = 6.0 kg/year[6]1 Since the entire amount of waste paint is handed over to industrial waste processors, $[6]_1$ = [6] = 6.0 kg/year3) Amount of diluted paint sprayed [7] Amount of hexavalent chromium sprayed [3] - [6] = 400 - 6.0 = 394kg/year 4) Amount shipped in products [8] Amount shipped in products [7] \times transfer efficiency = 394 \times 0.3 = 118 kg/year5) Paint sludge [14] Hexavalent chromium in paint sludge [7] - [8] = 394 - 118 = 276kg/year [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, = 276 kg/year $[14]_2$ = [14]6) Total of waste/recycle amount

[16] Total transfers in waste

$$[16] = [6]_1 + [14]_2 = 6.0 + 276 = 282 \text{kg/year}$$

< Calculation Example 4> Dry booth

< Calculation Conditions	y DOULI
(1) Calculation Conditions	
1) Process	
Booth	dry booth, over-sprayed paint sludge mist is collected with filter
Painting machine	electric static, air
Object to be painted	flat metal plate
Deodorizing device	None.
2) Paint used	melamine alkyd resin paint PRTR• SK-008 (priming)
Annual amount used	20,000kg/year (solid portions: 50 mass%)
Composition (pigment)	zinc chromate (ZnCrO ₄): 7.0 mass%
	As hexavalent chromium metal, 7.0×0.287 (hexavalent chromium
	conversion factor) = 2.0 mass % (For the conversion factors, refer to
	reference material in the basic manual. Since zinc chromate has
	water solubility of less than 1 mass%, it is not a water soluble
	compound of zinc.)
(solvent)	xylene: 25 mass%
Waste paint amount per year	300kg/year, the entire amount is assumed to be handed over to industrial waste dealers
3) Paint thinner	
Annual amount used	10,000kg/year
Composition	toluene: 10 mass%, xylene: 30 mass%, other chemical substances that
	are not included in the Class I chemical substances: 60 mass%
4) Cleaning thinner	
Annual amount used	20,000kg/year
Composition	toluene: 60 mass%, chemical substances not included in the Class I chemical substances: 40 mass%
Amount of recovered thinner generated	
	6,000kg/year, the entire amount is assumed to be handed over to
	recycling firms.
5) Estimation of transfer efficiency	
The transfer efficiency is calculated to be 60% (= 0.6) from Table-4 and process conditions.	
6) Paint sludge	
Amount of paint sludge generated 3,940kg/year, the entire amount is assumed to be handed over to industrial waste processors.	
The solvent ingredient content in paint sludge is assumed to be 1	
mass%.	
When the paint sludge amount is unknown, estimation is made from the following formula: Amount of paint sludge generated	
= (annual amount of paint sludge used-amount of waste paint)	
× (solid portions ratio) × $(1 - \text{transfer efficiency})$	
$= (20,000 - 300) \times 0.5 \times (1 - 0.6)$	
= 3,940 kg/year	
7) Others	

7) Others It is assumed that there is no release to land nor on-site landfills.

(2) Calculation of Releases and Transfers of Solvent ingredient [Xvlene] 1) Calculation of the annual amount of xylene handled [1] Xylene in paint $20,000 \text{kg/year} \times 0.25 = 5,000 \text{kg/year}$ [2] Xylene in paint thinner $10,000 \text{kg/year} \times 0.30 = 3,000 \text{kg/year}$ [3] Xylene in diluted paint [1] + [2]=5,000+3,000= 8,000kg/year [4] Xylene in cleaning thinner 20,000kg/year $\times 0$ = 0 kg/year[5] Annual amount of xylene handled [3] + [4] = 8,000 + 0 = 8,000 kg/year2) Waste paint (unused paint) [6] Xylene in waste paint $300 \text{kg/year} \times 0.25 = 75 \text{kg/year}$ [6] Since the entire amount of waste paint is handed over to industrial waste processor, = [6] = 75 kg/year[6]1 3) Amount of diluted paint sprayed [7] Amount of xylene sprayed [3] - [6] = 8,000 - 75 = 7,925kg/year 4) Paint sludge [14] Xylene in paint sludge 3,940kg/year $\times 0.01$ = 39 kg/year[14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, = 39 kg/year $[14]_2$ = [14]5) Total of waste/recycle amount [16] Total transfers as waste $= [6]_1 + [14]_2 = 75 + 39 = 114$ kg/year [16] 6) Releases to air [18] Potential releases to air = 7,886kg/year [5] - [16] = 8,000 - 114[23] Releases to air = [18] = 7,886kg [23] [Toluene] 1) Calculation of the annual amount of toluene handled [1] Toluene in paint $20,000 \text{kg/year} \times 0 = 0 \text{kg/year}$ [2] Toluene in paint thinner $10,000 \text{kg/year} \times 0.10 = 1,000 \text{kg/year}$ [3] Toluene in diluted paint = 0 + 1,000 = 1,000kg/year [1] + [2][4] Toluene in cleaning thinner $20,000 \text{kg/year} \times 0.60 = 12,000 \text{kg/year}$ [5] Annual amount of toluene handled

[3] + [4] = 1,000 + 12,000 = 13,000 kg/year

2) Amount of diluted paint sprayed [7] Sprayed amount of toluene = 1,000 kg/year= [3] [7] 3) Paint sludge [14] Toluene in paint sludge 3,940kg/year $\times 0.01$ = 39 kg/year(when toluene content in paint sludge is unknown, :0.2 mass%) [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_2$ = [14] = 39 kg/year4) Recovered thinner [15] Toluene in recovered thinner 6,000kg/year $\times 0.60$ = 3,600kg/year [15]₂ Since recovered thinner entire amount is handed over to recycling firms, $[15]_2$ = [15] = 3,600kg/year 5) Total of waste/recycle amount [16] Total transfers as waste [16] $= [14]_2$ = 39 kg/year[17] Total amount for recycling [17] $= [15]_2$ = 3,600kg/year 6) Releases to air [18] Potential releases to air [5] - [16] - [17] = 13,000 - 39 - 3,600 = 9,361 kg/year[23] Releases to air = [18]= 9,361kg/year [23]

(3) Calculation of Releases and Transfers of Pigment Component [Hexavalent chromium] 1) Calculation of the annual amount of hexavalent chromium handled [1] Hexavalent chromium in paint $20,000 \text{kg/year} \times 0.020 = 400 \text{kg/year}$ [3] Hexavalent chromium in diluted paint = [1] = 400 kg/year[3] [5] Annual amount of hexavalent chromium handled [5] = [1] = 400 kg/year2) Waste paint (unused paint) [6] Hexavalent chromium in waste paint 300kg/year $\times 0.020$ = 6.0kg/year [6]1 Since the entire amount of waste paint is handed over to industrial waste processors, $[6]_1$ = [6] = 6.0kg/year 3) Amount of diluted paint sprayed [7] Amount of hexavalent chromium sprayed [3] - [6] = 400 - 6.0 = 394kg/year 4) Amount shipped in products [8] Amount shipped in products [7] \times transfer efficiency = 394 \times 0.6 = 236kg/year 5) Paint sludge [14] Hexavalent chromium in paint sludge = 394 - 236 = 158 kg/year[7] - [8] [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, = 158 kg/year $[14]_2$ = [14]6) Total of waste/recycle amount [16] Total transfers as waste $[16] = [6]_1 + [14]_2 = 6.0 + 158 = 164$ kg/year

Work Sheet (2) Entry Example

<Calculation Example 2> --- Water washing booth (using multiple coating machines) ---< Calculation Example 3> --- Oil booth ---
< Calculation Example 4> --- Dry booth

_			-	-	<	< Calcu	lation I	Exampl	le 3>	- Oil bo	oth			<	Calcul	lation I	Exampl	e 4>	Dry bo	ooth	
			(i)	(ii)	(iii) Rele transfers of	ases and wastewater	(iv)	(V)		(iv)	Transfers co	ontained in w	aste				s for recyclin			Releases to	
			A Annual amount of Class I Substances	B Amount Shipped in product	C Releases to water bodies	D	E Releases to land	F On-site landfills	G Waste paint	H Oil booth waste oil	l Paint sludge (indusrial	J Paint sludge burnt ash	K Re-covered thinner	L Total	M Waste paint	N Oil booth waste oil	O Recovered thinner	P Total	Q Without deodorizing treatment	With dec treat R Removed	
			handled	•	[9] or [10]	ic ontorod					waste)									amount	
_			[5]	[8]	into C	is entered C or D	[13]	[14] ₁	[6] ₁	[12] ₁	[14] ₂	[14] ₃	[15] ₁	[16]	[6] ₂	[12] ₂	[15] ₂	[17]	[23]	[21]	[24]
	_	<example 2=""></example>	7000			3.0			75		11			86						290	6622
		oluene	12000			3.0		\sim	10		11					\sim	3600	3600		290	8386
	ŀ	oldonio	12000			0.0		_		_						_	0000	0000		/	0000
	2	<example 3=""></example>																			
		ylene	8000			\setminus		\langle	75	\langle	14			89	\langle	10		10	\langle	237	7664
1		oluene	13000		\sim			\sim		\sim	14		\sim	14	\sim	10	3600	3610	\sim	30	9346
100		<example 4=""></example>																			
	Х	ylene	8000						75		39			114					7886		
	Т	oluene	13000			\langle	\langle		\langle	\langle	39			39		\langle	3600	3600	9361		
	_																				
F	-	<example 2=""></example>																			
	_	hromium(VI)	600	248				\sim	9.0		343	\sim		352				\sim			
	L	ead	2400	991				\geq	36		1373	\sim		1409	\sim			\geq			
	_ -	<example 3=""></example>																			
		<example 3=""> Chromium(VI)</example>	400	118					6.0		276			282							
ż	2-								0.0												
		<example 4=""></example>																			
	0	Chromium(VI)	400	236				\sim	6.0		158	\sim		164				\sim			
	-																				
┢	+																				
1																					
	┢																				
	┢																				

(Remarks)

The blank entry with * for the releases and transfers calculated in the work sheet (1) is transferred in the above table.
 Concerning wastewater, in the case without a wastewater treatment facility, the value of line No[9] of the work sheet (1), and in the case with the wastewater treatment facility, the value of [10] are transferred in U or E in the above table, according to their destinations.

< Calculation Example 5> Painting of Automobile Parts

(1) Calculation Conditions

Ca	culation conditions	
1)	Process	
	Booth	water washing booth,
	Painting machine	air spray
	Object to be painted	automobile part (medium size flat plate)
	Waste water treatment	treated by the plant facility
	Deodorizing device	none.
2)	Paint used	
	Annual amount used	40,000kg/year
	Composition	xylene: 25 mass%, toluene: 20mass%,2-ethoxyethyl acetate:5.0
	-	mass%
	pigment (copper salts: less t	han 1%):
		none
3)	Paint thinner	
	Annual amount used	20,000kg/year
	Composition	toluene: 40mass%, xylene: 40 mass%
4)	Cleaning thinner	
	Annual amount used	50,000kg/year
	Composition	toluene: 40 mass%, xylene: 40 mass%
5)	Estimation of transfer effici	ency
	The transfer efficiency is es	timated to be 40% (= 0.4) from Table-4 and process conditions.
6)	Transfers in waste	
	Estimated for each solvent	as xylene 0.2 mass% of the annual amount used : toluene 0.015 mass%
	of the annual amount used:	2-ethoxyethyl acetate:1 mass% of the annual amount used: (by actual
	measurement)	
7)	Amount for off-site recyclin	ng
-	Estimated for each columnt.	$\frac{1}{2}$ where 21 massly of the annual amount used, taly and 20.5 massly of

Estimated for each solvent as xylene 31 mass% of the annual amount used : toluene 29.5 mass% of the annual amount used: 2-ethoxyethyl acetate:4 mass% of the annual amount used (by actual measurement)

8) Others

It is assumed that there is no release to land nor on-site landfills.

(2) Calculation of Releases and Transfers of Solvent ingredient [Xvlene] 1) Calculation of the annual amount of xylene handled [1] Xylene in paint $40,000 \text{kg/year} \times 0.25 = 10,000 \text{kg/year}$ [2] Xylene in paint thinner $20,000 \text{kg/year} \times 0.40 = 8,000 \text{kg/year}$ [3] Xylene in diluted paint [1] + [2]= 10,000 + 8,000= 18,000 kg/year[4] Xylene in cleaning thinner $50,000 \text{kg/year} \times 0.40 = 20,000 \text{kg/year}$ [5] Annual amount of xylene handled [3] + [4] = 18,000 + 20,000= 38,000 kg/year2) Paint sludge [14] Xylene in paint sludge $[5] \times 0.002 = 38,000 \text{ kg/year} \times 0.002 = 76 \text{ kg/year}$ [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, = [14]= 76 kg/year $[14]_2$ 3) Recovered thinner [15] Xylene in recovered thinner $[5] \times 0.31 = 38,000 \text{ kg/year} \times 0.31 = 11,800 \text{ kg/year}$ [15]₂ Since recovered thinner entire amount is handed over to recycling firms, $[15]_2$ = [15]= 11,800 kg/year4) Total of waste/recycle amount [16] Total transfers as waste [16] = 76 kg/year $= [14]_2$ [17] Total amount for recycling [17] $= [15]_2$ = 11,800kg/year 5) Releases to air [18] Potential releases to air [5] - [16] - [17] = 38,000 - 76 - 11,800 = 26,120 kg/year[23] Releases to air [23] = [18]= 26,120 kg/year[Toluene] 1) Calculation of the annual amount of toluene handled [1] Toluene in paint $40,000 \text{kg/year} \times 0.20 = 8,000 \text{kg/year}$ [2] Toluene in paint thinner $20,000 \text{kg/year} \times 0.40 = 8,000 \text{kg/year}$ [3] Toluene in diluted paint

[1] + [2] = 8,000 + 8,000 = 16,000 kg/year

- [4] Toluene in cleaning thinner
- $50,000 \text{kg/year} \times 0.40 = 20,000 \text{kg/year}$
- [5] Annual amount of toluene handled

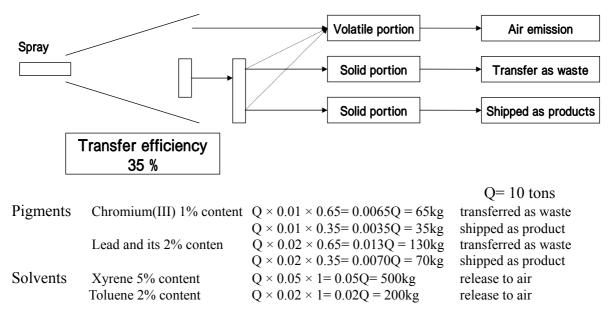
[3] + [4] = 16,000 + 20,000 = 36,000 kg/year

2) Paint sludge

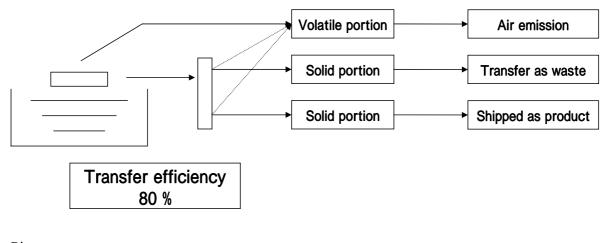
[14] Toluene in paint sludge $[5] \times 0.00015 = 36,000 \text{kg/year} \times 0.00015 = 5.4 \text{kg/year}$ [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, $[14]_{2}$ = 5.4kg/year = [14] 3) Recovered thinner [15] Toluene in recovered thinner $[5] \times 0.295 = 36,000 \text{ kg/year} \times 0.295 = 10,600 \text{ kg/year}$ [15]₂ Since entire amount of recovered thinner is handed over to recycling firms, $[15]_{2}$ = [15] = 10,620kg/year 4) Total of waste/recycle amount [16] Total transfers as waste = 5.4kg/year [16] $= [14]_2$ [17] Total amount for recycling [17] $= [15]_2$ = 10,620kg/year 5) Releases to air [18] Potential releases to air [5] - [16] - [17] = 36,000 - 5.4 - 10,620= 25,375kg/year [23] Releases to air [23] = [18]= 25,375kg/year [2-ethoxyethyl acetate] 1) Calculation of the annual amount of 2-ethoxyethyl acetate handled [1] 2-Ethoxyethyl acetate in paint $40,000 \text{kg/year} \times 0.050 = 2,000 \text{kg/year}$ [2] 2-Ethoxyethyl acetate in paint thinner 20,000kg/year $\times 0$ = 0 kg/year[3] 2-Ethoxyethyl acetate in diluted paint [1] + [2]= 2,000 + 0 = 2,000kg/year [4] 2-Ethoxyethyl acetate in cleaning thinner 50,000kg/year $\times 0$ = 0 kg/year[5] Annual amount of 2-ethoxyethyl acetate handled = 20,000 + 0 = 2,000kg/year [3] + [4] 2) Paint sludge [14] 2-ethoxyethyl acetate in paint sludge $= 2,000 \text{kg/year} \times 0.01 = 20 \text{kg/year}$ $[5] \times 0.01$ [14]₂ Since the entire amount of paint sludge is handed over to industrial waste processors, = [14] = 20 kg/year $[14]_2$ 3) Recovered thinner [15] 2-Ethoxyethylacetate in recovered thinner $= 2,000 \text{kg/year} \times 0.04$ $[5] \times 0.04$ = 80 kg/year[15]₂ Since entire amount of recovered thinner is handed over to recycling firms, $[15]_2$ = [15]= 80 kg/year4) Total of waste/recycle amount [16] Total transfers as waste $= [14]_2$ = 20 kg/year[16] [17] Total amount for recycling $= [15]_2$ [17] = 80 kg/year

5) Releases to air [18] Potential releases to air [5] - [16] - [17] = 2,000 - 20 - 80 = 1,900kg/year [23] Releases to air [23] = [18] = 1,900kg/year

		(i)	(ii)	(iii) Relea transfers of	ases and wastewater	(iv)	(v)		(iv) Transfers contained in waste			(vii) Transfers	ofor recycling	9	(viii) Releases to air				
		A Annual amount of	B Amount	С	D	E Releases to	F On-site	G	H Oil booth	l Paint sludge	J Paint	K Re-covered	L	M	N Oil booth	O Recovered	P	Q Without deodorizing	S With deo treatr	
		Class I Substances handled	Amount Shipped in product			land	On-site landfills	Waste paint	waste oil	(indusrial waste)	Paint sludge burnt ash	thinner	Total	Waste paint	waste oil	thinner	Total	treatment	R Removed amount	
		[5]	[8]	[9] or [10] into C	is entered or D	[13]	[14] ₁	[6] ₁	[12] ₁	[14] ₂	[14] ₃	[15] ₁	[16]	[6] ₂	[12] ₂	[15] ₂	[17]	[23]	[21]	[24]
	Xylene	38,000								80			80			11,800		26,120		
	Toluene	36,000								5.4			5.4			10,600	10,600	25,395		
	2-ethoxyethyl acetate	2,000								20			20			80	80	1,900		
1																				
, tit																				
Cohoot /thinno																				
100																				
┢																				
Diamont																				
ä																				
L																				
																				I
8																				
add C																				
L	1							1	I											


Work Sheet (2) Entry Example<Calculation Example 5> ---Painting of Automobile Parts---

< Calculation Example 6> Painting Process in Casting Industry


Calculation procedure of releases and transfers in painting process of casting products

- In fig.4, painting process in the general manufacturing diagram of casting products, and in fig.5 an example of painting process diagram are shown.
- In the actual paint for air spray(A) and for dipping(C) in Table-9, no Class Designated Chemical Substance was contained, and so, for calculation example, imaginary paints B and D were chosen.
- Suppose a casting product to be painted is medium-sized, choose 35% for air spray line and 80% for dipping line as transfer efficiencies
- · Annual amount of paint handled Q is supposed to be 10 tons.

Air spray painting of a casting product

Dipping Process of a casting product

Pigments	S Chromium(III) 2% content	$Q \times 0.02 \times 0.2 = 0.004Q = 400kg$	transferred as waste
		$Q \times 0.02 \times 0.8 = 0.016Q = 160 kg$	shipped as product
	Lead and its 3% content	$Q \times 0.03 \times 0.2 = 0.006Q = 60 kg$	transferred as waste
		$Q \times 0.03 \times 0.8 = 0.024Q = 240$ kg	shipped as product
Solvent	Xyrene 45% content	$Q \times 0.45 \times 1$ = 0.45Q= 4,500kg	release to air

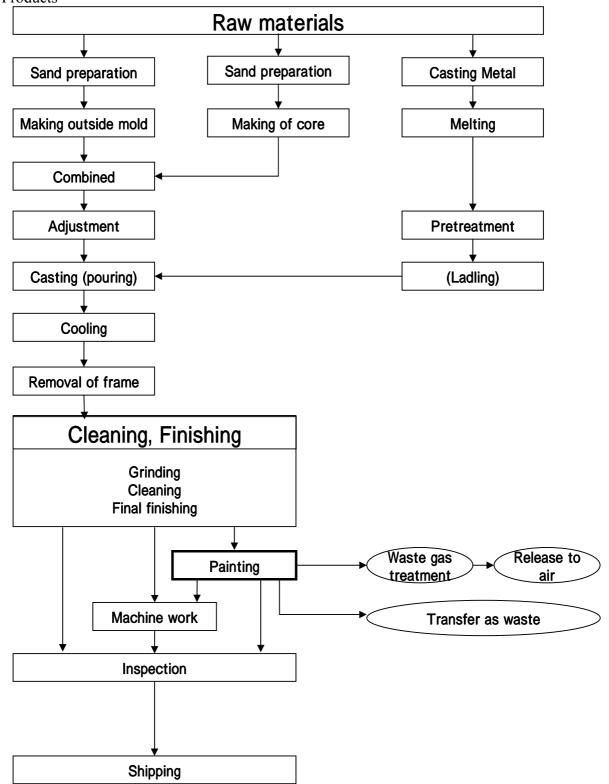


Fig.4 Releases from Painting Process in the General Manufacturing Diagram of Casting Products

Fig.5 Example of Painting Process of Casting Products

Mounting Preheating	Painting	Drying		Demounting
---------------------	----------	--------	--	------------

Table-9 Standard Composition of Paints for PRTR Calculation

Class D	esignated	Air s	spray	Dipping		
Chemical S	Substances	Α	В	С	D	
Pigments	Chromium compound	0%	1%	0%	2%	
_	Lead compound	0%	2%	0%	3%	
	Zinc compound	0%	0%	0%	0%	
Solvent	Xylene	0%	5%	0%	45%	
	Toluene	0%	2%	0%	0%	
Other Che	micals	100%	90%	100%	50%	

Table 10 Estimation of transfer efficiency in painting process of casting products

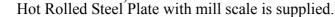
Painting process	(Casting Product					
Fainting process	Large size	Medium size	Small size	products			
Air spray	40%	35%	30%	30-40%			
Airless spray	60%	55%	50%	50-60%			
Electrostatic air		60%	50%	50-60%			
Electrostatic airless		70%	65%	65-75%			
Dipping		80%	80%	80-90%			

Example of large size Casting Products

Worktable of machine tool, framework of printing machine, engine parts of ship

Example of medium size Casting Products

Engine parts of automobile, housing of transmission, oil pressure valve


Example of small size Casting Products

Casting products for electric goods, joint parts, etc.

< Calculation Example 7> Painting Process in Shipbuilding

1. Painting process in general

(Steel Plate to be coated):

Shop primer coating

To keep from rusting and corrosion in fabrication and construction process, and to make painting process afterwards easier, the surface of steel plates is undercoated. As shop primer coating process is usually exclusive and automated within doors, paint dust is not scattered outdoors. Some shipyards purchase primer coated steel plates from mill makers, to omit shop primer coating within shipyard.

(Welding, Cutting, Bending):

Undercoated steel plates are processed to fabricate each block of the hull.

Painting/coating of blocks:

Before construct the hull by assembling blocks, each block above mentioned is painted either in the exclusive process indoors, or in general multi-purpose process outdoors. In the latter case, while over sprayed paint dust is scattered in shipyard mostly, a small part of paint dust is scattered to outside of shipyard.

Construction of hull by assembling blocks:

Painted/coated blocks are transferred to building berth or building dock, and hull is constructed by jointing all the blocks.

(Launching):

The ship is launched after constructed.

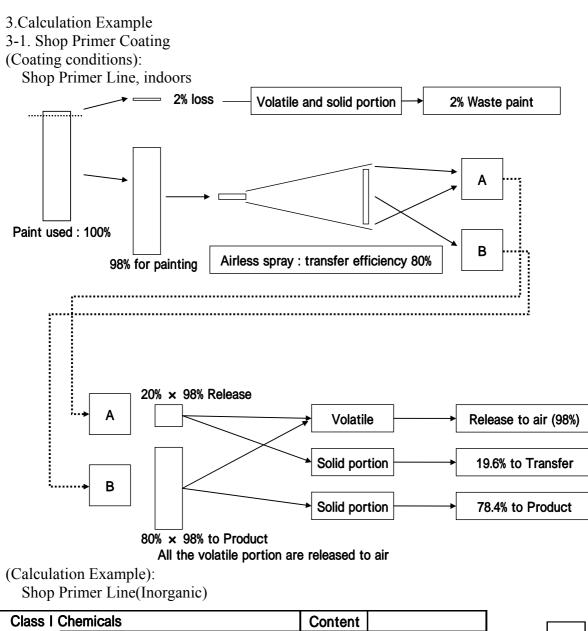
Painting of subdivision:

Painting after the hull is constructed is usually processed outdoors, and so over sprayed paint dust is scattered outdoors, like painting process outdoors in block fabricating stage. But, at some areas like inside of tanks, paint dust is not scattered outside of the area. 2. Painting process and releases to environment

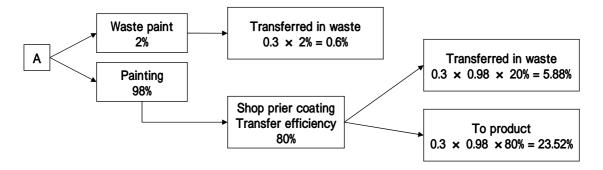
To calculate releases to environment from painting processes in shipbuilding industry, the fundamental items are as follows.

Airless spray painting is the most popular painting process and the amount of paint used for brush coating and roller coating is negligibly small.

In painting processes, yield rate of paint used in painting process is not 100% of the total amount of paint used. Usually waste paint which is residual paint in containers is generated and mostly off-site transferred in waste.


Transfer efficiency for airless spray painting differs in painting conditions, namely, about 80% for painting process indoors, and approximately 60% for outdoors, estimated by empirical knowledge in the past.

From spray painting process indoors and that of enclosed subdivision, no paint mist is released to outside of shipyard, and all the paint mist is recovered, and then off-site transferred in waste.

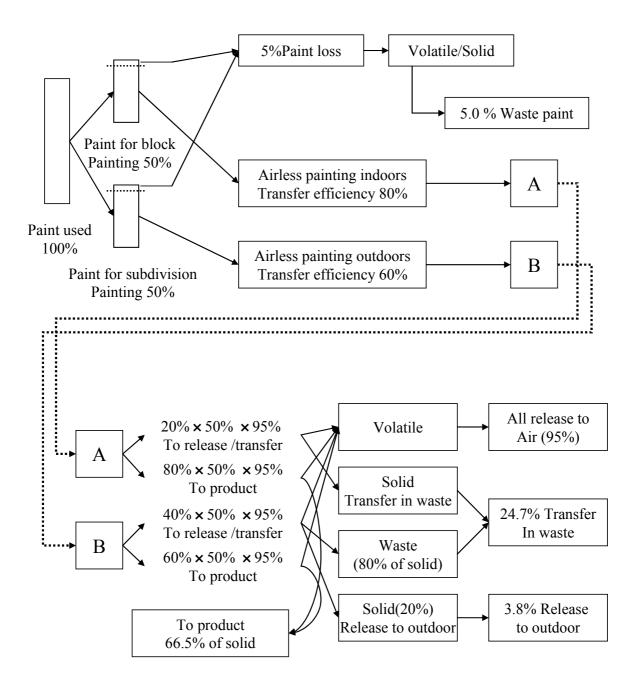

From spray painting process outdoors and that of open subdivision, paint mist is released to outside of workshop, and a part of paint mist is scattered even to the outside of shipyard.

In this case, on average, about 80% of paint mist is released to inside of shipyard, and about 20% is scattered outside of shipyard.

Painting	Painting	Paint	Transfer	R	eleases
process	conditions	loss	efficiency	Volatile	Solid
Shop primer coating	Automated, indoors airless spray	2%	80%		Transferred in waste
Block fabricating	Indoors, airless spray	5%	80%		Transferred in waste
stage painting	Outdoors, airless spray	5%	60%	Releases to air	80% waste 20% releases
Painting of	Closed, airless spray	5%	80%		Transferred in waste
subdivision	Open, airless spray	5%	60%		80% waste 20% releases

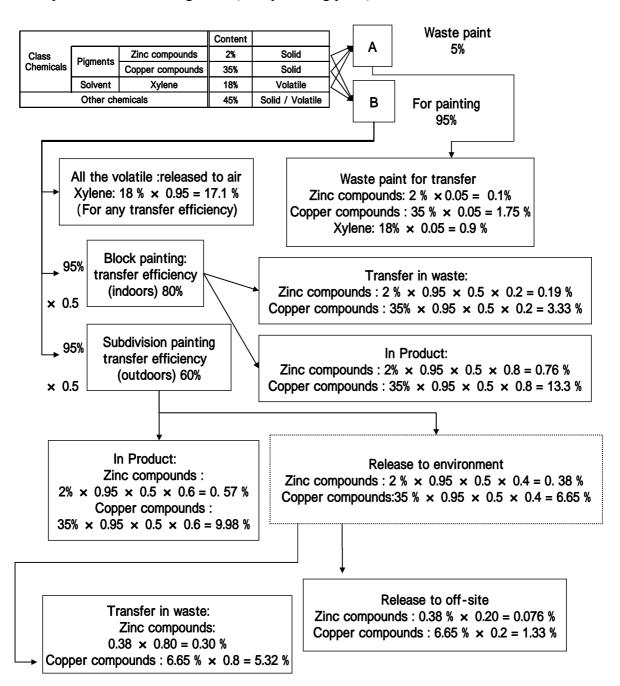
Class I	Chemicals		Content			1
	Pigments	Zinc compounds(w-s)	30%	Solid	 Α	
	Solvents			Volatile		1
Other	Chemicals		70%	Solid / Volatile		

So, in the case, the amount of paint used is A Kg:


Class I Chemicals	Release / Transfer	Amount(Release / Transfer) (Kg)			
	Waste paint (transfer)	A × 0.006			
Zinc componds (water-soluble)	Transfer	A × 0.0588			
(water boldble)	To product	A × 0.2352			

(Notes) Zinc compound contained in this shop primer paint is powder of zinc metal, and so, not zinc compound (water-soluble). As powder of zinc metal is not designated in Class Chemicals of the PRTR Law, reporting is not required.

3-2. Continuous painting process from block fabricating stage painting (indoors) to subdivision painting. (outdoors)


(Painting condition)

Combination of block fabricating stage painting and subdivision painting process.

(Calculation Example)

Ships bottom Antifouling Paint (Self-polishing paint)

Class chemicals	Release/Transfer (media)	Amount (kg)	Notes
	Waste paint (transfer)	A × 0.001	
Zinc	Transfer (in waste)	A × 0.00494	+
compound	Release to off-site	A × 0.00076	
	In product	A × 0.0133	+
	Waste paint (transfer)	A × 0.0175	
Copper	Transfer (in waste)	A × 0.0865	+
compound	Release to on-site	A × 0.0133	
	In product	A × 0.233	+
Xylene	Waste paint (transfer)	A × 0.009	
Луюне	Release to air	A × 0.0171	

In case the annual amount of paint used is A kg, calculation result is as follows.

LineNo.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment j) (as metallic element)
		Annual amount of solvent ingredient i handled F1i (kg/Y)	Annual amount of pigment j handled F1j (kg/Y)
		=Annual amount of paint used F1(kg/Y)	=Annual amount of paint used F1(kg/Y)
		× concentration of solvent ingredient i(f1i)	× concentration of pigment j (f1j)
	Annual amount of		
	Class I Chemicals	· notes	notes
	handled in paint	1)concentration=mass% ÷ 100 2)when solvent ingredient i is contained in many types of paints	1) if pigment is a metallic compound, calculate as the metallic element, using metal conversion factors
	•	, calculate for each paint and sum up them.	2) concentration=mass% ÷ 100
			3)when pigment j is contained in many types of paints ,calculate for each
			paint and sum up them.
		Annual amount of solvent ingredient i handled in thinner F2i (kg/Y)	
	Annual amount	=Annual amount of thinner used F2(kg/Y)	
	handled in thinner	× concentration of solvent ingredient i(f2i)	
	Annual	Annual amount of solvent ingredient i handled in diluted paint F12i (kg/Y)	Annual amount of pigment j handled in diluted paint F12j (kg/Y)
	Annual amount handled in diluted	= F1i + F2i	= F1j + F2j
	paint	= +	= F1j
	paint		=
	Annual amount	Annual amount of solvent ingredient i handled in cleaning thinner F3i	
	handled in	(kg/Y)	
	cleaning thinner	= annual amount of cleaning thinner used	
	•	× concentration of solvent ingredient i(f3i) Total annual amount of solvent ingredient i handled Fi (kg/Y)	Total annual amount of pigment j handled Fj (kg/Y)
	Annual amount	= F1i + F2i + F3i	= F1j
	handled	= +	=
		Annual amount of solvent ingredient i in waste paint generated (unused	Annual amount of pigment j in wastepaint generated (unused paint) Dpj
		paint) Dpi (kg/Y)	(kg/Y)
		= Annual amount of waste paint Dp (kg/Y)	= Annual amount of waste paint Dp (kg/Y)
	Class I Chemicals	× concentration of solvent ingredient i(dpi)	× concentration of pigment j (dpj)
	in waste paint		
		•note	•note
		1)if (dpi) is unknown, use (f1i)	1)if (dpj) is unknown, use (f1j)
		Annual amount of solvent ingredient i in unused paint, transferred as	Annual amount of pigment j in unused paint, transferred as waste D1j
	In case waste	waste D1i (kg/Y)	(kg/Y)
	paint is	= Annual amount of transfer as waste paint D1 (kg/Y)	= Annual amount of transfer as waste paint D1 (kg/Y)
1	transferred as	× concentration of solvent ingredient i (d1i)	× concentration of pigment j (d1j)
	waste	note	· note
		1)if (d1i) is unknown, use (dpi)	1)if (d1j) is unknown, use (dpj)

LineNo.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment j) (as metallic element)
2			Annual amount of pigment j in unused paint , off-site recycled R1j (kg/Y) = Annual amount of unused paint , off-site recycled R1 (kg/Y) × concentration of pigment j (r1j) •note 1)if (r1j) is unknown, use (dpj)
	Annual amount handled in diluted paint used	Annual amount of solvent ingredient i in diluted paint sprayed (kg/Y) = -	Annual amount of pigment j in diluted paint sprayed (kg/Y) = -
	Annual amount shipped in product		Annual amount of pigment j shipped in product Pj (kg/Y) = x transfer efficiency (%÷100) •note 1) While in the amount of diluted paint sprayed, proportional part to transfer efficiency is shipped as product, another part(over sprayed part) is transferred as waste. 2) Transfer efficiency is shown in [Table-6], or should be estimated by [calculation examples] 3)When multiple types of painting machines are used in the same booth, the average transfer efficiency av should be used. (-1-2)
	water bodies before waste water treatment	Annual amount of potential release to water bodies (before waste water treatment) of solvent ingredient i, Wi (kg/Y) = Annual amount of waste water before treatment W(kg/Y) × concentration of solvent ingredient i in waste water wi 'notes 1) In case no data is available, use wi=0.0001for water washing booth 2) In case waste water is released to POTWs, Wi (kg/Y) should be reported as off-site transfer. 3) In case waste water is released to another waste water treatment, proportionally devided amount of final release to water bodies, among the facilities concerned, should be reported as release to water bodie. 4) In case plant have not waste water treatment facility, the value and in case have not, the value are filled on the C and D of wark sheet (2)	

LineNo.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment i) (as metallic element)
	Saloulation Roll	Annual amount of release to water bodies (after waste water treatment)	
		of solvent ingredient i , Wi ^{treated} (kg/Y)	
		= Annual amount of waste water after treatment W ^{treated} (kg/Y)	
	Deleges to water	× concentration of solvent ingredient i in waste water after treatment	
	Release to water bodies (after	Wi ^{treated}	
	wastewater	= Annual amount of potential release to water bodies (before waste	
	treatment)	water treatment) of solvent ingredient i, Wi (kg/Y)	
		× (1-removal efficiency)	
		•notes	
		1)In case removal efficiency is unknown, refer to Table-10.	
		Annual amount removed by waste water treatment Wiremoved (kg/Y)	
	Annual amount of	= Wi (kg/Y) × removal efficiency	
	class I chemicals		
	re-moved by wastewater	= -	
	treatment	notes	
	lioutinoite	1) In this case, class I chemicals are just released to air by aeration	
		different from treatment by the activated sludge method.	
		Annual amount of solvent ingredient i in waste oil from oil booth, Doi	
		(kg/Y)	
		 Annual amount of waste oil Do (kg/Y) concentration of solvent ingredient i (doi) 	
	solvent ingredient i in waste oil (oil		
	booth)	·notes	
		1) In case no data is available, use doi = 0.001 for oil booth (Reference-	
		Annual amount of solvent ingredient i in waste oil off-site transferred D2i (kg/Y)	
	In case waste oil	= Annual amount of waste oil transferred D2 (kg/Y)	
	is off-site	× concentration of solvent ingredient i (d2i)	
	transferred as waste		
	Wasic	notes	
		1) In case no data is available, use d2i=doi	

LineNo.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment j) (as metallic element)
		Annual amount of solvent ingredient i released to land L1i (kg/Y)	Annual amount of pigment j released to landL1j (kg/Y)
		= Annual amount released to land L1 (kg/Y)	= Annual amount released to land L1 (kg/Y)
	Delegen to land	× concentration of solvent ingredient i (11i)	× concentration of pigment j (11j)
	Releases to land	notes	· notes
		1)Lli should be estimated by records of accident, repair, daily reports,	1)Lli should be estimated by records of accident, repair, daily reports,
		sampling, etc.	sampling, etc.
		Annual amount of solvent ingredient i in paint sludge Dsi (kg/Y)	Annual amount of pigment j in paint sludge Dsj (kg/Y)
		= Annual amount of paint sludge Ds (kg/Y)	= Annual amount of paint sludge Ds (kg/Y)
	Annual amount of	× concentration of solvent ingredient i (dsi)	× concentration of pigment j in paint sludge (dsj)
	solvent ingredient		Or, = -
	in paint sludge	 notes 1) In case no data is available for (dsi), use (dsi) = 0.002 (Reference-2) 	
		$\frac{1}{1111111111111111111111111111111111$	
		Annual amount of solvent ingredient i in paint sludge landfilled L2i (kg/Y)	Annual amount of pigment j in paint sludge landfilled L2j (kg/Y)
		= Annual amount of paint sludge landfilled L2 (kg/Y)	= Annual amount of paint sludge landfilled L2 (kg/Y)
	In case paint	× concentration of solvent ingredient i (l2i)	× concentration of pigment j (12j)
1	sludge is on-site	• notes	•notes
	landfilled	1) In case no data is available for (12i), assume (12i) =dsi	1) In case no data is available for (12), assume (12) =ds
		Annual amount of solvent ingredient i in paint sludge off-site transferred	
	In case paint	D3i (kg/Y)	(kg/Y)
	sludge is off-site	 Annual amount of paint sludge transferred D3 (kg/Y) concentration of solvent ingredient i (d3i) 	 Annual amount of paint sludge transferred D3 (kg/Y) concentration of pigment j (d3j)
2	transferred as		× concentration of pigment j (ds))
	waste	·notes	·notes
		1) In case no data is available for (d3i), assume (d3i) =dsi	1) In case no data is available for (d3j), assume (d3j) =dsj
			Annual amount of pigment j in ash generated by incineration off-site
			transferred D4j
			= Annual amount of ash generated by incineration off-site transferred D
	In case paint		4 (kg/Y) × concentration of pigment j (d4j) in ash
3	sludge is on-site		
	incinerated		·notes
			1) In case incinerator furnace with the total grate area of 0.5m2 or more
			or the total burning capacity of 50kg/hour or more, the reporting of
			dioxins is also necessary.

LineNo.	Coloulation itom	Class I Chemicale (colvent ingradient i)	Class I Chemicale (Digmont i) (as motallis element)
Lineno.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment j) (as metallic element)
	Annual amount of solvent ingredient in recovered thinner	Annual amount of solvent ingredient i in recovered thinner Dri (kg/Y) = Annual amount of recovered thinner Dr (kg/Y) × concentration of solvent ingredient i (dri) in recovered thinner	
1	In case recovered thinner is off-site transferred as waste	Annual amount of solvent ingredient i in recovered thinner D5i (kg/Y) = Annual amount of recovered thinner off-site transferred D5 (kg/Y) × concentration of solvent ingredient i (d5i) in recovered thinner	
2	In case recovered thinner is off-site recycled	Annual amount of solvent ingredient i in recovered thinner off-site recycled R3i (kg/Y) = Annual amount of recovered thinner off-site recycled R3 (kg/Y) × concentration of solvent ingredient i (r3i) in recovered thinner	
	Total annual amount of off-site transfers as waste	= 1 + 1 + 2 + 1	Total annual amount of pigment j off-site transferred Dj (kg/Y) = D1j + D3j + D4j = 1 + 2 + 3
	Total annual amount of off-site recycled	Total annual amount of solvent ingredient i off-site recycled Ri (kg/Y) = R1i + R2i + R3i = 2 + 2 + 2	Total annual amount of pigment j off-site recycled Rj (kg/Y) = R1j = 2
		Potential annual amount of releases to air Ai (kg/Y) = -{ or } 1	
	Releases from drying furnace before treatment	Annual amount of releases from drying furnace before treatment A2i (kg/Y) = x transfer efficiency ($\% \div 100$) x drying furnace transfer rate 'notes 1)Transfer efficiency is shown in [Table-5], or should be estimated by [calculation examples] 2))When multiple types of painting machines are used in the same booth, the average transfer efficiency av should be used. (-1-2) 3) ($\% \div 100$) x of volatile components V in diluted paint is supposed to be introduced to drying furnace, and then to deodorizing device (Fig. 2) 4) In case is unknown, =0.1, because experimentally =0.1 ~ 0.3	

LineNo.	Calculation item	Class I Chemicals (solvent ingredient i)	Class I Chemicals (Pigment j) (as metallic element)
	Releases from deodorizing device	Annual amount of releases from deodorizing device A2i ^{treated} (kg/Y) = Releases from drying furnace A2i (kg/Y) × (1-removal efficiency) • notes 1)In case removal efficiency is unknown, see (Reference-3)	
ଅ	Annual amount	Annual amount removed by deodorizing device A2i ^{removed} (kg/Y) = Annual amount of releases from drying furnace A2i (kg/Y) × (removal efficiency) = A2i - A2itreated = - = A2it ^{removed}	
2	Releases from painting booth	Releases from painting booth to air A1i (kg/Y)	
Ø	Releases to air (no deodorizing device)		
24	Total releases to air (with deodorizing device)	Q + Q	

Table-5 List of Symbols

	ist of Symbols	
Symbol	Name	Unit
	Releases of solvent ingredient i from coating booth	kg/year
A2i	Releases of solvent ingredient i from dry furnace	kg/year
A2i ^{treated}	Releases of solvent ingredient i from dry furnace after deodorizing treatment	kg/year
A2i ^{removed}	Removed amount by deodorizing device	kg/year
Ai	Potential (before treatment) releases of solvent ingredient i to air (= A1i + A2i)	kg/year
Do	Oil booth waste oil generation amount	kg/year
doi	Content of solvent ingredient i in oil booth waste oil	Mass% ÷ 100
Doi	Amount of solvent ingredient i in oil booth waste oil	kg/year
Dp	Amount of waste paint (unused paint) generated	kg/year
dpi	Content of solvent ingredient i in waste paint	Mass% ÷ 100
dpj	Content of pigment component j in waste paint	Mass% ÷ 100
Dpi	Amount of solvent ingredient i in waste paint	kg/year
Dpj	Amount of pigment component j in waste paint	kg/year
Dr	Amount of recovered thinner generated	kg/year
dri	Content of solvent ingredient i in recovered thinner	Mass% ÷ 100
Dri	Amount of solvent ingredient i in recovered thinner	kg/year
Ds	Amount of paint sludge generated	kg/year
dsi	Content of solvent ingredient i in paint sludge	Mass% ÷ 100
dsi	Content of solvent ingredient in paint sludge	Mass% ÷ 100
Dsi	Amount of solvent ingredient i in paint sludge	kg/year
Dsi	Amount of solvent ingredient in paint sludge	
D3	Transfers of waste paint as waste	kg/year
d1i		kg/year
	Content of solvent ingredient i in waste paint as waste	Mass% ÷ 100
<u>d1j</u>	Content of pigment component j in waste paint as waste	Mass% ÷ 100
D1i	Transfers of solvent ingredient i in waste paint as waste	kg/year
D1j	Transfers of pigment component j in waste paint as waste	kg/year
D2	Transfers of oil booth waste oil as waste	kg/year
d2i	Content of solvent ingredient i in oil booth waste oil as waste	Mass% ÷ 100
D2i	Transfers of solvent ingredient i in oil booth waste oil as waste	kg/year
D3	Transfers of paint sludge as waste	kg/year
d3i	Content of solvent ingredient i in paint sludge residual as waste	Mass% ÷ 100
<u>d3j</u>	Content of pigment component j in paint sludge residual as waste	Mass% ÷ 100
D3i	Transfers of solvent ingredient i in paint sludge as waste	kg/year
D3j	Transfers of pigment component j in paint sludge as waste	kg/year
D4	Transfers of burnt ash as waste	kg/year
d4j	Content of pigment component j in burnt ash as waste	Mass% ÷ 100
D4j	Transfers of pigment component j in burnt ash as waste	kg/year
D5	Transfers of recovered thinner as waste	kg/year
d5i	Content of solvent ingredient i in recovered thinner as waste	Mass% ÷ 100
D5i	Transfers of solvent ingredient i in recovered thinner as waste	kg/year
Di	Total transfers of solvent ingredient i as waste (= D1i + D2i + D3i + D5i)	kg/year
F1	Annual amount of paint handled	kg/year
f1i	Content of solvent ingredient in paint	Mass% ÷ 100
f1j	Content of pigment component j in paint	Mass% ÷ 100
F1i	Annual amount of solvent ingredient i in paint handled	kg/year
F1j	Annual amount of pigment component j in paint handled	kg/year
F2	Annual amount of paint thinner handled	kg/year
f2i	Content of solvent ingredient i in paint thinner	Mass% ÷ 100
F2i	Annual amount of solvent ingredient i in thinner handled	kg/year
F12	Annual amount of diluted paint handled (= F1 + F2)	kg/year
f12i	Content of solvent ingredient i in diluted paint	Mass% ÷ 100
F12i	Annual amount of solvent ingredient i in diluted paint handled (= F1i + F2i)	kg/year
f12j	Content of pigment component j in diluted paint	Mass% ÷ 100
F12j	Annual amount of pigment component j in diluted paint handled (= F1j)	kg/year

Symbol	Name	Unit
F3	Annual amount of cleaning thinner handled	kg/year
f3i	Content of solvent ingredient i in cleaning thinner	Mass% ÷ 100
F3i		kg/year
Fi	Annual amount of solvent ingredient i handled (= F1i + F2i + F3i)	kg/year
Fj	Annual amount of pigment component j handled (= F1j)	kg/year
i	Representing solvent ingredient i	ry/yeai
I	Representing pigment component j	
 L1		kg/year
 1i	Content of solvent ingredient i in leaked solution etc. to land	Mass% ÷ 100
11 1i	Content of pigment component j in leaked solution etc. to land	Mass% \div 100 Mass% \div 100
 L1i	Releases of solvent ingredient i to land	kg/year
L1i	Releases of pigment component j to land	kg/year
 L2	Onsite landfills	
 12i		kg/year
	Content of solvent ingredient i in the onsite landfills	Mass% ÷ 100
2j	Content of pigment component j in the onsite landfills	Mass% ÷ 100
L2i		kg/year kg/year
L2j	Onsite landfills of pigment component j	kg/year
P	Production amount of product	kg/year
<u>pj</u>	Content of pigment component j in product	Mass% ÷ 100
Pj P1	Amount of pigment component j shipped as product	kg/year
<u>R1</u>	Amount of waste paint (unused paint)sent offsite for recycling	kg/year
<u>r1i</u>	Content of solvent ingredient i in waste paint sent offsite for recycling	Mass% ÷ 100
r1j	Content of pigment component j in waste paint sent offsite for recycling	Mass% ÷ 100
R1i		kg/year
R1j	Amount of pigment component j included in waste paint sent offsite for recycling	kg/year
R2	Amount of oil booth waste oil sent offsite for recycling	kg/year
r2i	Content of solvent ingredient i in oil booth waste oil	Mass% ÷ 100
R2i	Amount of solvent ingredient i included in oil booth waste oil sent offsite for recycling	kg/year
R3		kg/year
r3i	Content of solvent ingredient i in recovered thinner sent offsite for recycling	Mass% ÷ 100
R3i	Recycled amount of solvent ingredient i included in recovered thinner	kg/year
Ri	Total transfers of solvent ingredient i sent offsite for recycling (= R1I + R2I + R3I)	kg/year
S	Solid content in diluted paint (solids: resin + pigment)	kg/year
<u> </u>	Solvent ingredient in diluted paint (VOC)	kg/year
W	Annual amount of wastewater before wastewater treatment	kg/year
wi	Content of solvent ingredient i in wastewater before treatment	Mass% ÷ 100
Wi		kg/year
Wt ^{treated}	Annual amount of wastewater discharged after wastewater treatment	kg/year
Wi ^{treated}	Content of solvent ingredient i in wastewater after treatment	Mass% ÷ 100
Wi ^{treated}	Releases of solvent ingredient i after wastewater treatment	Kg/year
wV		Mass% ÷ 100
Wi ^{re-moved}	Removed amount by wastewater treatment facility	kg/year
	Dry furnace transfer rate	Mass% ÷ 100
	Rate of Solvent ingredient transferred to water excepting Solvent ingredient take into dry furnace	Mass% ÷ 100
	Transfer efficiency	Mass% ÷ 100
av	Load rate = amount of paint used for coating machine (kg/cycle) amount of paint used of the	Mass% ÷ 100
	booth (kg/cycle) where (load rate) = 1.0	

Table o Hallster Efficiency Table	Table-6	Transfer	Efficiency	Table
-----------------------------------	---------	----------	------------	-------

		Flat plate	Beverage can	Large Aluminum	Automobile		Electric	Wood	Construction equipment		
		Flat plate	Inner surface	Outer surface	diameter pipe	material	Face coating	Inside	appliance	building material	railway vehicle
Air	atomized spray	40 ~ 50%	50 ~ 60%	20 ~ 30%	-	20 ~ 30%	20 ~ 30%	40 ~ 50%	30 ~ 40%	40 ~ 50%	50 ~ 60%
Lo	w pressure air	50 ~ 60%	60 ~ 70%	30 ~ 40%	-	30 ~ 40%	-	50 ~ 60%	40 ~ 50%	50 ~ 60%	50 ~ 60%
	Airless	60 ~ 70%	80 ~ 90%	60 ~ 70%	70 ~ 80%	40 ~ 50%	-	-	-	60 ~ 70%	60 ~ 70%
	Air airless	65 ~ 75%	80 ~ 90%	60 ~ 70%	75 ~ 85%	40 ~ 50%	-	-	-	65 ~ 75%	65 ~ 75%
	Air	60 ~ 70%	-	60 ~ 70%	-	60 ~ 70%	40 ~ 50%	70 ~ 80%	60 ~ 70%	60 ~ 70%	65 ~ 75%
Electrostatic	Air airless	70 ~ 80%	-	80 ~ 90%	-	65 ~ 75%	-	-	-	70 ~ 80%	70 ~ 80%
Electro	Bell	80 ~ 90%	-	-	-	75 ~ 85%	60 ~ 70%	-	70 ~ 80%	80 ~ 85%	80 ~ 90%
	Disk	-	-	-	-	-	-	-	-	-	-

Based on values from coating machine makers.

	Water washing booth	Oil booth
Toluene ppm (average)	~ 10	120 ~ 1300 (550)
Xylene ppm (average)	~ 70 (30)	170 ~ 720 (360)

Reference-1(Table-7) Analysis Results of Solvent ingredients in Waste Solution

(Based on analysis results of 5 water washing booths and 2 oil booths.)

Reference-2(Table-8) Analysis Results of Solvent ingredients in Paint Sludge

	Water washing booth	Oil booth	Total average
Water content %	54.5	-	54.5
Toluene ppm	70 ~ 7800	110 ~ 990	820
(average)	(950)	(490)	
Xylene ppm	50 ~ 6700	130 ~ 720	980
(average)	(1200)	(450)	

(Based on analysis results of 5 water washing booths and 2 oil booths.)

Reference-3(Table-9)	Removal efficiency and decomposition rate (%) of			
exhaust gas treatment devices				

Name of treatment device	Substance to be treated							
	Dust particles		Gaseous organic compound		Gaseous inorganic compound			
Cyclon	60	(0)	0	(0)	0	(0)		
Bug filter	90	(0)	0	(0)	0	(0)		
Electric dust collector	90	(0)	0	(0)	0	(0)		
Combustion equipment	0	(0)	99.5	(99.5)	0	(0)		
Absorber (scrubber)	80	(0)	0	(0)	80	(80)		
Activated carbon adsorber	10	(0)	80	(0)	50	(0)		

Reference-4(Table-10) Removal efficiency and decomposition rate (%) of effluent treatment devices

Type of treatment device	Substance to be treated								
	Suspended inorganic compound		Suspended organic compound		Soluble inorganic compound		Soluble organic compound		
General precipitation device	40	(0)	20	(0)	0	(0)	0	(0)	
Coagulating sedimentation device	80	(0)	70	(0)	0	(0)	0	(0)	
Microbial decomposing device	70	(0)	70	(30)	0	(0)	60	(40)	
Membrane filter	100	(0)	100	(0)	0	(0)	0	(0)	
Activated carbon adsorber	10	(0)	10	(0)	20	(0)	80	(0)	