

Chemical Risk Assessment under the Chemical Substances Control Law in Japan and comparison with REACH

Yusuke Hirai

Risk Analysis Division, Chemical Management Center, National Institute of Technology and Evaluation, Japan

- Chemical Substances Control Law (CSCL)* was one round behind
- Major difference between CSCL and REACH
- Step-wise risk assessment under the CSCL
- Screening assessment for general chemical substances
- Risk assessment for Priority Assessment Chemical substances(PACs)
- Current Status

* <u>Chemical Substances</u> Control Law(CSCL): The Law Concerning the Examination and Regulation of Manufacture, etc. of Chemical Substances

- First runner in the past (CSCL established since 1973)
- Risk assessment for some chemicals (TCE, PCE, TBT etc.) (since 1989)
- Development of risk assessment scheme (from 2001 to 2006)
 - ✓ 150 Initial risk assessment documents by NITE/CERI
 - ✓ 27 Risk assessment documents by AIST
- TGD(draft) for risk assessment under CSCL by NITE (from 2006-2010)
- Latest amendment on 2009, implementation on 2011
 - ✓ Management based on "Risk"
 - ✓ Scope all the existing chemicals
 - ✓ Prioritization led approach

The WSSD 2020 goal to minimize significant risk

CSCL	REACH	
Humans via the environment	Humans via the environment	
Ecosystem	Ecosystem	
Workers	Workers	
Consumers	Consumers	
Food additives, the fertilizer	Food additives, the fertilizer	
medicine, cosmetics	medicine, cosmetics	
Pesticides	Pesticides	
Biocides (exclude hygiene)	Biocides	

Scope of Risk Assessment				
All Chemicals (Existing & New Chemicals)		New Chemicals only		
Prioritization	No-data, no-market			
	****	*** **		

Modified ERIA(2011) Study on the Economic Impact of Chemicals Management in ASEAN and East-Asia

Step-wise risk assessment under the CSCL

nite National National Step-wise risk assessment 化学物質管理センター

nite Notional Detailed data is used in higher tier

		General chemicals	Priority Assessment Chemicals			
		Screening	Risk Assessment(RA) I RA I		RAI	
		Tier 0	Tier 1	Tier 2	Tier 3	Tier 4
Toxicity	Screening test	0				×
	Long term test	0	0	0	0	
Р	Degradability	0	0			
В	Bioaccumulation	×	0	\bullet		\bullet
Physical chemical property		×	0			
Exposure	Production volume		•	•	•	
	Use Category & volume					•
	Sub use category & volume	×	•	•	•	•
	PRTR	0	×	0	0	0
	Monitoring	Δ	Δ	0	0	0
	handling situation	×	×	×	0	0

lace : Essential, igodot : Use if available, igtriangle : Pending, imes : No required

Screening assessment for General chemical substances

Exposure Class based on total emissions

National Institute of Technology and

化学物質管理センター

Receive the submitted information (Annual Quantity of Manufacture, etc. / Use category)

If no data available, default class (class 2) will be applied

nite Institute of Institute of

Risk assessment I for Priority Assessment Chemical substances(PACs)

nite Institute of Exposure assessment is Unique 化学物質管理センター

Exposure scenario

Source	Scenario	Lifecycle stage	
Point source	Hypothetical emission sources	Production/ formulation/industrial use	
Non point source	Down the drain (ex. For cleaner products)	Private use	
	For air fresheners, biocidal products		
	For fuel, fuel additives		
	For Antifoulants	Service life	

Thank you for your attention !!

Acknowledgement

Takashi Fukushima (METI, Japan) Yuko Nakagiri (METI, Japan) Tomohiro Tsunemi (METI, Japan) Mariko Murata (NITE, Japan) & Wataru Naito (AIST, Japan)

If you would like to know more detailed information about this topics or other topics, please contact me.

hirai-yusuke@nite.go.jp