<table>
<thead>
<tr>
<th>登録プログラムの名称</th>
<th>JCSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>登録番号</td>
<td>JCSS0061</td>
</tr>
<tr>
<td>初回登録日</td>
<td>1995年12月1日</td>
</tr>
<tr>
<td>最新交付日</td>
<td>2018年5月23日</td>
</tr>
<tr>
<td>登録された事業所の名称及び所在地</td>
<td>公益社団法人日本アイソトープ協会 川崎技術開発センター 〒210-0821 神奈川県川崎市川崎区殿町三丁目25番20号 法人番号7010005018674</td>
</tr>
<tr>
<td>問い合わせ窓口</td>
<td>研究開発課 Tel: 044-589-5494 FAX: 044-589-5615</td>
</tr>
<tr>
<td>登録規格</td>
<td>ISO/IEC 17025:2005（校正）</td>
</tr>
<tr>
<td>区分</td>
<td>別紙のとおり</td>
</tr>
</tbody>
</table>
登録に係る区分：放射線・放射能・中性子

法律に基づく初回登録年月日：平成7年12月1日

校正手法の区分の呼称 [登録更新年月日]：X線測定器、γ線測定器、γ（X）線核種、α/β線核種 [平成29年11月27日]

校正施設で行う校正/現地校正の別：恒久的施設で行う校正

校正測定能力

<table>
<thead>
<tr>
<th>校正手法の区分の呼称</th>
<th>種類</th>
<th>校正範囲</th>
<th>拡張不確かさ</th>
</tr>
</thead>
<tbody>
<tr>
<td>放射線源 ((^{125})I)</td>
<td>エネルギー範囲：23 keV (3.6 fJ)以上 50 keV (8 fJ)以下</td>
<td>照射線量 10 nC/kg 以上 40 μC/kg 以下</td>
<td>5.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>照射線量率 10 nC/(kg・h) 以上 40 μC/(kg・h) 以下</td>
<td>5.4 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ 0.33 μGy/h 以上 1.4 mGy/h 以下</td>
<td>5.4 %</td>
</tr>
<tr>
<td>X 線測定器 ((^{241})Am, (^{57})Co)</td>
<td>エネルギー範囲：50 keV (8 fJ)以上 200 keV (32 fJ)以下</td>
<td>照射線量 20 nC/kg 以上 50 nC/kg 以下</td>
<td>4.7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>照射線量率 20 nC/(kg・h) 以上 50 nC/(kg・h) 以下</td>
<td>4.7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ 0.67 μGy/h 以上 1.7 μGy/h 以下</td>
<td>4.7 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ率 0.67 μGy/h/h 以上 1.7 μGy/h/h 以下</td>
<td>4.7 %</td>
</tr>
<tr>
<td>アンモラフィ測定器 ((^{125})I)</td>
<td>エネルギー範囲：23 keV (3.6 fJ)以上 50 keV (8 fJ)以下</td>
<td>照射線量 10 nC/kg 以上 40 μC/kg 以下</td>
<td>5.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>照射線量率 10 nC/(kg・h) 以上 40 μC/(kg・h) 以下</td>
<td>5.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ 0.33 μGy/h 以上 1.4 mGy/h 以下</td>
<td>5.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ率 0.33 μGy/h/h 以上 1.4 μGy/h/h 以下</td>
<td>5.8 %</td>
</tr>
<tr>
<td>γ線測定器 ((^{133})Ba, (^{226})Ra, (^{137})Cs, (^{60})Co)</td>
<td>エネルギー範囲：200 keV (32 fJ)以上 1250 keV (200 fJ)以下</td>
<td>照射線量 20 nC/kg 以上 50 nC/kg 以下</td>
<td>4.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>照射線量率 20 nC/(kg・h) 以上 50 nC/(kg・h) 以下</td>
<td>4.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ 0.67 μGy/h 以上 1.7 μGy/h 以下</td>
<td>4.8 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>空気カーマ率 0.67 μGy/h/h 以上 1.7 μGy/h/h 以下</td>
<td>4.8 %</td>
</tr>
</tbody>
</table>

登録の有効期限は、登録又は登録更新年月日から4年後です。
登録の有効期限は、登録又は登録更新年月日から4年後です。

<table>
<thead>
<tr>
<th>放射線源</th>
<th>線量測定器</th>
<th>線量測定器</th>
</tr>
</thead>
<tbody>
<tr>
<td>(192Ir, 137Cs, 60Co)</td>
<td>(137Cs, 60Co)</td>
<td>(192Ir)</td>
</tr>
<tr>
<td>エネルギー範囲：200 keV (32 fJ) 超 1250 keV (200 fJ) 以下</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照射線量</td>
<td>30 μC/kg 超</td>
<td>30 mC/kg 以下</td>
</tr>
<tr>
<td>照射線量率</td>
<td>30 μC/(kg・h) 超</td>
<td>30 mC/(kg・h) 以下</td>
</tr>
<tr>
<td>空気カーマ</td>
<td>1 mGy 超</td>
<td>1 Gy 以下</td>
</tr>
<tr>
<td>空気カーマ率</td>
<td>1 mGy/h 超</td>
<td>1 Gy/h 以下</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>線量測定器</th>
<th>エネルギー範囲：200 keV (32 fJ) 超 1250 keV (200 fJ) 以下</th>
</tr>
</thead>
<tbody>
<tr>
<td>照射線量</td>
<td>50 nC/kg 超</td>
</tr>
<tr>
<td>照射線量率</td>
<td>50 nC/(kg・h) 超</td>
</tr>
<tr>
<td>空気吸収線量</td>
<td>1.7 μGy 超</td>
</tr>
<tr>
<td>空気吸収線量率</td>
<td>1.7 μGy/h 超</td>
</tr>
<tr>
<td>空気カーマ</td>
<td>1.7 μGy 超</td>
</tr>
<tr>
<td>空気カーマ率</td>
<td>1.7 μGy/h 超</td>
</tr>
<tr>
<td>1cm線量当量</td>
<td>2.1 μSv 超</td>
</tr>
<tr>
<td>1cm線量当量率</td>
<td>2.1 μSv/h 超</td>
</tr>
</tbody>
</table>

#校正の方法は、全て自社で開発された手順でます。
校正手法の区分の呼称#	種類	校正範囲	拡張不確かさ*1)(信頼の水準約95%)

γ(χ)線核種

<table>
<thead>
<tr>
<th>種類</th>
<th>校正手法</th>
<th>放射能</th>
<th>放射能濃度</th>
<th>光子放射率</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ線核種放射能線源（固体・液体）</td>
<td></td>
<td>0.01 Bq 以上 7.5 GBq 以下</td>
<td>0.001 Bq/g 以上 75 Bq/g 以下</td>
<td>0.1 s⁻¹以上 1×10⁶ s⁻¹以下</td>
</tr>
<tr>
<td>光子線源</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ線核種放射能測定器</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ線スペクトロメータ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

α/β線核種

<table>
<thead>
<tr>
<th>種類</th>
<th>校正手法</th>
<th>放射能</th>
<th>放射能濃度</th>
<th>α線表面放出率</th>
</tr>
</thead>
<tbody>
<tr>
<td>α/β線放射能線源（固体・液体）</td>
<td></td>
<td>0.01 Bq 以上 7.5 GBq 以下</td>
<td>0.001 Bq/g 以上 75 Bq/g 以下</td>
<td></td>
</tr>
<tr>
<td>α/β線放射能測定器</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α/β線スペクトロメータ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

荷電粒子線源

<table>
<thead>
<tr>
<th>種類</th>
<th>校正手法</th>
<th>放射能</th>
<th>β線表面放出率</th>
</tr>
</thead>
<tbody>
<tr>
<td>荷電粒子測定器</td>
<td></td>
<td>2 Bq 以上 40 kBq 以下</td>
<td>10 s⁻¹以上 20 ks⁻¹以下</td>
</tr>
</tbody>
</table>

*1) 放射能の測定の不確かさは校正手順及び核種の崩壊形式に依存する。引用した最高測定能力の値は最も有効な条件で得られたものであり、核種又は放射能によって不確かさは大きくなることがある。

*2) 校正対象は核種のBi-210又はPo-210である。
恒久的施設で行う校正／現地校正の別：遠隔校正

校正測定能力

<table>
<thead>
<tr>
<th>校正手法の区分の呼称 #</th>
<th>種類</th>
<th>校正範囲</th>
<th>拡張不確かさ*1)（信頼の水準約95％）</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ (X)線核種</td>
<td>γ線核種放射能測定器</td>
<td>放射能</td>
<td>10 kBq以上7.5 GBq以下</td>
</tr>
<tr>
<td>再校正</td>
<td>Am-241 Po-210 Pb-210 insecurity</td>
<td>1.1 %</td>
<td></td>
</tr>
<tr>
<td>α/β線核種</td>
<td>α線放射能測定器</td>
<td>放射能</td>
<td>100 Bq以上7.5 GBq以下</td>
</tr>
<tr>
<td>α/β線スペクトロメータ</td>
<td>C-14 Si-32 P-32 P-33 S-35</td>
<td>1.1 %</td>
<td></td>
</tr>
<tr>
<td>荷電粒子測定器</td>
<td>α線表面放出率</td>
<td>200 s^-1以上20 ks^-1以下</td>
<td></td>
</tr>
<tr>
<td>再校正</td>
<td>Am-241 U(天然) Po-210 Pb-210 insecurity</td>
<td>2.4 %</td>
<td></td>
</tr>
</tbody>
</table>

#校正の方法は、全て自社で開発された手順です。
*1）放射能の測定の不確かさは校正手順及び核種の崩壊形式に依存する。引用した最高測定能力の値は、最も有利な条件で得られたものであり、核種又は放射能によって不確かさは大きくなることがある。
*2）校正対象は娘核種のBi-210又はPo-210である。