Chemical Management

Publications

日本語で表示

Biodegradation and Bioconcentration

1.
Dimitrova. N. H. Dermen, I.A. Todorova, N.D. Vasilev, K.G. Dimitrov, S.D. Mekenyan, O.G. Ikenaga, Y. Aoyagi, T. Zaitsu, Y. Hamaguchi, C. 2017. CATALOGIC 301C model - validation and improvement. SAR and QSAR in Environmental Research 28(6): 511-524.
2.
Cheng, F. Ikenaga, Y., Zhou, Y, Yu, Y. Li, W., Shen, J. Du, Z. Chen, L. Xu, C. Liu, G. Lee, P. W. and Tang, Y. 2012. In Silico Assessment of Chemical Biodegradability. J. Chem. Inf. Model. 52: 655-669.
3.
Sakuratani, Y. Noguchi, Y. Kobayashi, K. Yamada, J. and Nishihara, T. 2008. Molecular size as a limiting characteristic for bioconcentration in fish. Journal of Environmental Biology January 29: 89-92.
3.
Sakuratani, Y. Kasai, K. Noguchi, Y. and Yamada, J. 2007. Comparison of predictivities of Log P calculation models based on experimental data for 134 simple organic compounds. QSAR & Combinatorial Science 26: 109-116.
5.
Hori, K. Ikenaga, Y. Arata, K. Takahashi, T. Kasai, K. Noguchi, Y. Sumimoto, M. and Yamamoto, H. 2007. Theoretical study on the reaction mechanism for the hydrolysis of esters and amides under acidic conditions. Tetrahedron, 63: 1264-1269.
6.
Weisbrod, A. V. Burkhard, L. P. Arnot, J. Mekenyan, O. Howard, P. H. Russom, C. Boethling, R. Sakuratani, Y. Traas, T. Bridges, T. Lutz, C. Bonnell, M. Woodburn, K. and Parkerton. T. 2007. Workgroup report: review of fish bioaccumulation databases used to identify persistent, bioaccumulative, toxic substances. Environmental Health Perspectives 115: 255-261.
7.
Sakuratani, Y. Yamada, J. Kasai, K. Noguchi, Y. and Nishihara, T. 2005. External validation of the biodegradability prediction model CATABOL using data sets of existing and new chemicals under the Japanese Chemical Substances Control Law. SAR and QSAR in Environmental Research 16: 403-431.
8.
Sakuratani, Y. Kasai, K. Yamada, J. Noguchi, Y. 2004. CERI Biodegradation Prediction System. OECD Series on Testing and Assessment Number 49; The Report From The Expert Group on (Quantitative) Structure-Activity Relationships [(Q)SARs] on The Principles for The Validation of (Q)SARs, (OECD, Paris) ANNEX 10, p186-197.

Repeated dose toxicity

1.
Sakuratani, Y. Zhang, H. Q. Nishikawa, S. Yamazaki, K. Yamada, T. Yamada, J. Gerova, K. Chankov, G, Mekenyan, O. and Hayashi, M. 2013. Hazard Evaluation Support System (HESS) for Predicting Repeated Dose Toxicity Using Toxicological Categories. SAR QSAR Environ. Res. 24: 617-629.
2.
Yamada, T. Hasagawa, R. Nishikawa, S. Sakuratani, Y. Yamada, J. Yamashita, T. Yoshinari, K. Kamata, E. Ono, A, Hirose, A. and Hayashi. M. 2013. A new parameter that supports speculation on the possible mechanism of hypothyroidism induced by chemical substances in repeated-dose toxicity studies. J. Toxicol. Sci. 38:291-299.
3.
Yamada, T. Tanaka, Y. Hasegawa, R. Sakuratani, Y. Yamada, J. Kamata, E. Ono, A. Hirose, A. Yamazoe, Y. Mekenyan, O. and Hayashi, M. 2013. A category approach to predicting the repeated-dose hepatotoxicity of allyl esters. Regul. Toxicol. Pharmacol. 65: 189-195.
4.
Sakuratani, Y. Zhang, H. Q. Nishikawa, S. Yamazaki, K. Yamada, T. Yamada, J. and Hayashi, M. 2013. Categorization of nitrobenzenes for repeated dose toxicity based on adverse outcome pathways. SAR QSAR Environ. Res. 24: 35-46.
5.
Yamada, T. Tanaka, Y. Zhang, HQ. Hasegawa, R. Sakuratani, Y. Yamada, J. and Hayashi, M.@2012. A category approach to predicting the hemolytic effects of ethylene glycol alkyl ethers in repeated-dose toxicity. J. Toxicol. Sci. 37:503-515.
6.
Hayashi, M. and Sakuratani, Y. 2012. Development of an Evaluation Support System for Estimating Repeated Dose Toxicity of Chemicals Based on Chemical Structure. In: New Horizons in toxicity Prediction. Wilson, A. G. E. ed. (Royal Society of Chemistry, Cambridge) Chap. 3.
7.
Kobayashi, K. Sakuratani, Y. Abe, T. Yamazaki, K. Nishikawa, S. Yamada, J. Hirose, A. Kamata, E. and Hayashi, M. 2011. Influence of coefficient of variation in determining significant difference of quantitative values obtained from 28-day repeated-dose toxicity studies in rats. J. Toxicol. Sci. 36:63-71.
8.
Hayashi, M. and Sakuratani, Y. 2011. Hemolytic anemia induced by anilines and nephrotoxicity induced by 4-aminophenols. In: OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 138 , Report of the Workshop on Using Mechanistic Information in Forming Chemical Categories. (OECD, Paris): Annex 8.
9.
Kobayashi, K. Sakuratani, Y. Abe, T. Nishikawa, S. Yamada, J. Hirose, A. Kamata, E. and Hayashi, M. 2010. Relation between statics and treatment-related changes obtained from toxicity studies in rats: if detected a significant difference in low or middle dose for quantitative values, this change is considered as incidental change? J. Toxicol. Sci. 35:79-85.
10.
Nishikawa, S. Yamashita, T. Imai, T. Yoshida, M. Sakuratani, Y. Yamada, J. Maekawa, A and Hayashi, M. 2010. Thesaurus for histopathological findings in publically available reports of repeated-dose oral toxicity studies in rats for 156 chemicals. J. Toxicol. Sci. 35: 295-298.
11.
Kobayashi, K., Pillai, K. S., Sakuratani, Y. Suzuki, M. and Wang, J. 2008. Do we need to examine the quantitative data obtained from toxicity studies for both normality and homogeneity of variance? The Journal of Environmental Biology, 29: 47-52.
12.
Sakuratani, Y. Sato, S. Nishikawa, S. Yamada, J. Maekawa, A. and Hayashi, M. 2008. Category analysis of the substituted anilines studied in a 28-day repeat-dose toxicity test conducted on rats: Correlation between toxicity and chemical structure. SAR QSAR Environ. Res. 19:681-696.
13.
Kobayashi, K., Pillai, K. S., Sakuratani, Y., Abe, T., Kamata, E. and Hayashi, M. 2008. Evaluation and assessment of statistical tools used in short-term toxicity studies with small number of rodent, Journal of Toxicological Science, 33: 97-104.

Contact us

 Safety Assessment Division,  Chemical Management Center,  National Institute of Technology and Evaluation
Phone number:+81-3-3481-1812
Fax number:+81-3-3481-1950
Address:2-49-10 Nishihara, Shibuya-ku, Tokyo 1510066, Japan MAP